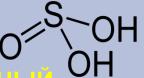


Учреждение Российской академии наук Институт проблем химико-энергетических технологий Сибирского отделения РАН

Гидротропный способ получения целлюлозы из нетрадиционного целлюлозосодержащего сырья

Денисова Марина Николаевна

ТРАДИЦИОННЫЕ ИСТОЧНИКИ ЦЕЛЛЮЛОЗЫ

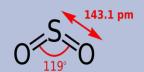

Промышленные способы получения целлюлозы

Применяемые в промышленности и исследованные в лабораторных условиях методы производства технической целлюлозы многочисленны. В основу классификации методов производства целлюлозы положены вид и свойства применяемых химических реагентов, а при использовании нескольких реагентов – последовательность обработки ими растительного сырья.

КИСЛОТНЫЕ

СУЛЬФИТНЫЙ

БИСУЛЬФИТНЫЙ



ЩЕЛОЧНЫЕ

• СУЛЬФАТНЫЙ

• НАТРОННЫЙ

•ЩЕЛОЧНО-

СУЛЬФИТНЫЙ

НЕДОСТАТКИ:

Использование кислотных и щелочных способов при производстве целлюлозы и лигнина приводит к получению продуктов с измененными свойствами, подвергшихся деструкции и окислению.

ГИДРОТРОПНАЯ ВАРКА

Гидротропный способ получения целлюлозы относят к нейтральным способам. Для получения целлюлозы по гидротропному способу применяют концентрированные водные растворы так называемых гидротропных солей некоторых органических кислот преимущественно щелочных солей ксилол-, толуол- и цимолсульфоновой кислот, а также щелочные бензоаты, салицилаты тиоцианаты.

- * ФИЗИОЛОГИЧЕСКАЯ БЕЗВРЕДНОСТЬ
- * ЛЕГКАЯ РЕГЕНЕРАЦИЯ

В настоящее время гидротпропы применяются

в косметической промышленности для приготовления эмульсий

в фармацевтической промышленности для получения лекарственных препаратов

Преимущество гидротропного способа делигнификации растительного сырья заключается в том, что варка производится с нейтральным раствором, а это почти исключает деградацию целлюлозы и приводит к высокому выходу продукта с большим содержанием α-целлюлозы. По той же причине выделяемый из растительного сырья лигнин сравнительно мало изменяется и обладает повышенной реакционной способностью.

В качестве источников для получения целлюлозы в работе использованы мискантус и плодовые оболочки овса, в качестве варочного реагента взят 30 %ный раствор бензоата натрия

Мискантус

Мискантус китайский это многолетнее растение с низкой потребностью в удобрениях и воде. Плантация мискантуса может «работать» до 20-25 лет. Для создания плантации мискантуса подходят земли нерентебельные для выращивания стандартных сельскохозяйственных культур. В условиях Западной Сибири урожайность мискантуса составляет 10-15 тонн на гектар. Низкое содержание лигнина (до 19 %) позволяет рассматривать мискантус как наиболее перспективное

целлюлозосодержащее

CHIDLE

Химический состав

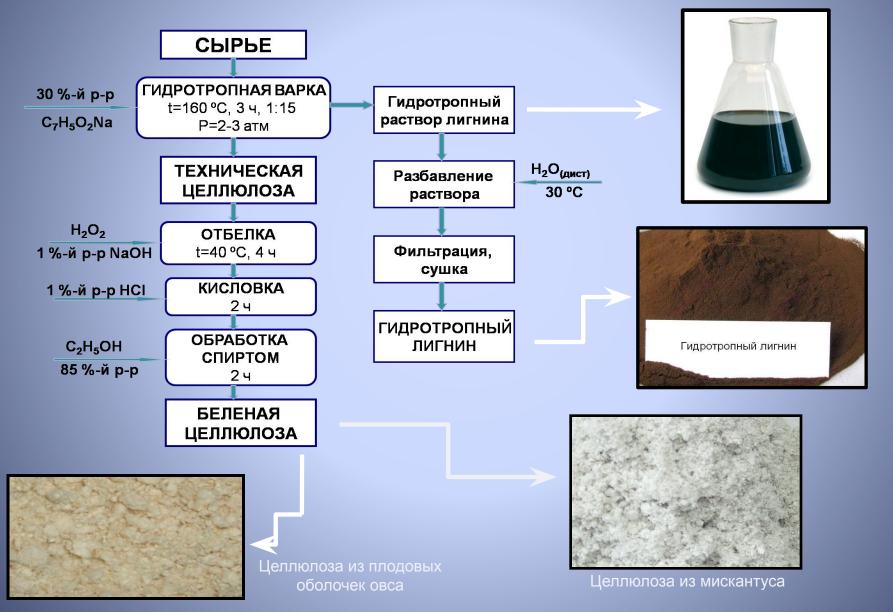
Характеристика*	Содержание, %
Массовая доля целлюлозы по Кюршнеру	57,4
Массовая доля лигнина	19,1
Массовая доля золы	3,9
Массовая доля пентозанов	23,3

⁻ в пересчете на абсолютно сухое сырье

Объектом исследования являлась новая форма мискантуса китайского (Веерника китайского *Miscanthus sinensis* - Anders) урожая 2008 г., выращенного на плантациях ИЦиГ СО РАН в Новосибирской области

Плодовые оболочки овсо

Химический состав

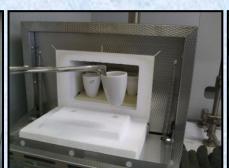

Характеристика*	[:] Содержание, %
Массовая доля целлюлозы по Кюршнеру	47,1
Массовая доля лигнина	18,6
Массовая доля золы	4,6
Массовая доля пентозанов	35,3

⁻ в пересчете на абсолютно сухое сырье

Объектом исследования являлись отходы переработки овса 2010 г из различных хозяйств Бийского района, предоставленные ЗАО «Бийский элеватор».

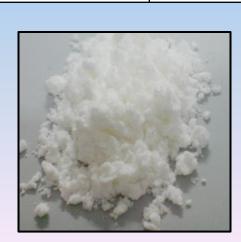
Плодовые оболочки овса являются отходом производства крупы. К достоинствам этого вида целлюлозосодержащего сырья можно отнести их концентрирование на перерабатывающих предприятиях, низкую стоимость и небольшой размер частиц, что позволяет использовать их для выделения целлюлозы без предварительного измельчения.

БЛОК-СХЕМА ГИДРОТРОПНОЙ ВАРКИ


Выход и основные физико-химические показатели технических целлюлоз из мискантуса и плодовых оболочек овса, полученные гидротропной варкой

	THE RESERVE AND ADDRESS.	THE COUNTY OF THE PARTY OF THE				
ВИД СЫРЬЯ	Выход*, %	ФИЗИКО-ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ				
		Массовая доля лигнина*, %	Массовая доля золы*, %	Массовая доля целлюлозы по Кюршнеру*, %	Степень полимеризации, ед	
МИСКАНТУС	52,1	10,5	2,1	88,9	1035	
ПЛОДОВЫЕ ОБОЛОЧКИ ОВСА	58,1	13,6	4,6	80,1	950	

^{* -} в пересчете на абсолютно сухое сырье

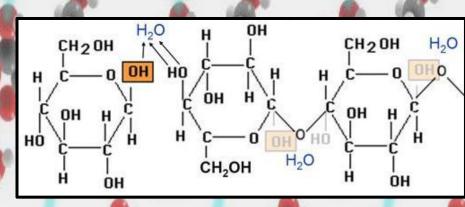


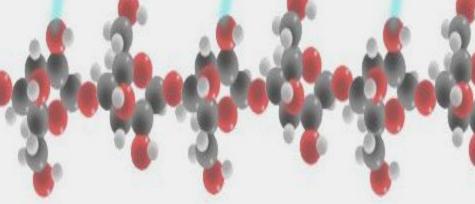
Выход и основные характеристики беленых целлюлоз из мискантуса и плодовых оболочек овса, полученные гидротропной варкой

Вид Выход*		Физико-химические показатели*			
	Выход*, %	Массовая доля лигнина, %	Массовая доля золы, %	Массовая доля целлюлозы по Кюршнеру, %	Степень полимеризации, ед
Мискантус	42,0	3,4	2,0	91,2	950
Плодовые оболочки овса	39,2	5,8	3,0	89,9	900

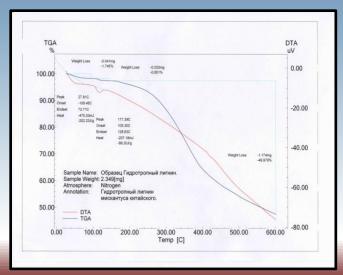
^{* -} в пересчете на абсолютно сухое сырье

После гидротропной варки получена беленая целлюлоза с выходом 39-42 %, что соответствует значению, близкому к количественному выходу (массовая доля нативной целлюлозы в мискантусе находится в пределах 40-44 %, в плодовых оболочках овса — 35-40 %).

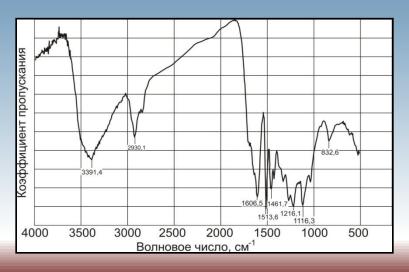

Целлюлоза


Таким образом, гидротропная делигнификация позволяет получить два основных продукта, практически в нативном виде:

- целлюлозу
- ЛИГНИН


Целлюлоза

Целлюлоза получена с хорошим выходом и качественными характеристиками. Подтверждены литературные данные о малом структурном изменении продукта гидротропной варки, о чем свидетельствует высокая степень полимеризации.



ЛИГНИН

Термогравиметрический анализ гидротропного лигнина из мискантуса

В результате одного цикла гидротропной варки получили 30-80 г воздушно-сухого лигнина. Проведен термогравиметрический анализ гидротропного лигнина, а также лигин проанализирован методом ИК-спектроскопии. Разбавленный варочный раствор — фильтрат после концентрирования возможно вновь использовать для гидротропной варки.

ИК-спектр гидротропного лигнина из мискантуса

Гидротропный лигнин из мискантуса

При введении операции предгидролиза перед гидротропной варкой, возможно получение еще одного дополнительного продукта – гидролизата.

Гидролизат представляет собой водный раствор органических и минеральных соединений, потенциально может быть использован как самостоятельный товарный продукт – рострегулятор растений.

На данный момент проводятся исследования, направленные на получение производных гидротропной целлюлозы: простых и сложных эфиров, лекарственных производных, а также ферментативного гидролиза целлюлозы с целью получения глюкозы

Возможные применения производных гидротропной целлюлозы

