
Quick Quiz 1

A baseball pitcher with a 90-mi/h fastball 
throws a ball while standing on a railroad 
flatcar moving at 110 mi/h. The ball is 
thrown in the same direction as that of the 
velocity of the train. Applying the Galilean 
velocity transformation equation, the speed 
of the ball relative to the Earth is (a) 90 mi/h
(b) 110 mi/h (c) 20 mi/h (d) 200 mi/h (e) 
impossible to determine.



Quick Quiz 2

A crew watches a movie that is two hours 
long in a spacecraft that is moving at high 
speed through space. Will an Earthbound 
observer, who is watching the movie through 
a powerful telescope, measure the duration of 
the movie to be (a) longer than, (b) shorter 
than, or (c) equal to two hours?



Quick Quiz 3

Suppose astronauts are paid according to the 
amount of time they spend traveling in space. 
After a long voyage traveling at a speed 
approaching c, would a crew rather be paid 
according to (a) an Earth-based clock, (b) 
their spacecraft’s clock, or (c) either clock?



Quick Quiz 4
You are packing for a trip to another star. 
During the journey, you will be traveling at 
0.99c. You are trying to decide whether you 
should buy smaller sizes of your clothing, 
because you will be thinner on your trip, due 
to length contraction. Also, you are 
considering saving money by reserving a 
smaller cabin to sleep in, because you will be 
shorter when you lie down. Should you (a) 
buy smaller sizes of clothing, (b) reserve a 
smaller cabin, (c) do neither of these, or (d) 
do both of these?
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The Lorentz Transformation Equations
The equations that are valid for all 
speeds and enable us to transform 
coordinates from S to S’ are the 
Lorentz transformation equations:



The Lorentz Transformation Equations
If we wish to transform coordinates 
in the S’ frame to coordinates in the 
S frame, we simply replace v by -v 
and interchange the primed and 
unprimed coordinates:

the Lorentz transformation 
equations should reduce to the 
Galilean equations

as v approaches zero,



The Lorentz Transformation Equations
In many situations, we would like to know the difference in 
coordinates between two events or the time interval between two 
events as seen by observers O and O’. We can accomplish this by 
writing the Lorentz equations in a form suitable for describing pairs 
of events. We can express the differences between the four variables 
x, x’, t, and t’ in the form:

the differences 
measured by 
observer O’

the differences 
measured by 
observer O



The Lorentz Velocity Transformation Equations
Suppose two observers in relative motion with respect to each 
other are both observing the motion of an object. Previously, we 
defined an event as occurring at an instant of time. Now, we wish 
to interpret the “event” as the motion of the object. We know that 
the Galilean velocity transformation is valid for low speeds. How 
do the observers’ measurements of the velocity of the object relate 
to each other if the speed of the object is close to that of light? 
Once again S’ is our frame moving at a speed v relative to S. 
Suppose that an object has a velocity component u’x measured in 
the S frame, where

(1)



The Lorentz Velocity Transformation Equations
If the object has velocity components along the y and z axes, the 
components as measured by an observer in S’ are

When v is much smaller than c (the nonrelativistic case), the 
denominator of Equation 1 approaches unity, and so 
which is the Galilean velocity transformation equation.

In another extreme, when                Equation 1 becomes



Relativistic Linear Momentum and
the Relativistic Form of Newton’s Laws

We have seen that in order to describe properly the motion 
of particles within the framework of the special theory of 
relativity, we must replace the Galilean transformation 
equations by the Lorentz transformation equations. Because 
the laws of physics must remain unchanged under the 
Lorentz transformation, we must generalize Newton’s laws 
and the definitions of linear momentum and energy to
conform to the Lorentz transformation equations and the 
principle of relativity. These generalized definitions should 
reduce to the classical (nonrelativistic) definitions for



First, recall that the law of conservation of linear momentum 
states that when two particles (or objects that can be modeled as 
particles) collide, the total momentum of the isolated system of 
the two particles remains constant. Suppose that we observe this 
collision in a reference frame S and confirm that the momentum 
of the system is conserved. Now imagine that the momenta of 
the particles are measured by an observer in a second reference 
frame S" moving with velocity v relative to the first frame. 
Using the Lorentz velocity transformation equation and the 
classical definition of linear momentum, p = mu (where u is the 
velocity of a particle), we find that linear momentum is not 
measured to be conserved by the observer in S’. However, 
because the laws of physics are the same in all inertial frames, 
linear momentum of the system must be conserved in all frames. 
We have a contradiction.

Relativistic Linear Momentum and
the Relativistic Form of Newton’s Laws



Relativistic Linear Momentum and
the Relativistic Form of Newton’s Laws

In view of this contradiction and assuming that the Lorentz 
velocity transformation equation is correct, we must modify the 
definition of linear momentum to satisfy the following 
conditions:
• The linear momentum of an isolated system must be conserved 
in all collisions.
• The relativistic value calculated for the linear momentum p of a 
particle must approach the classical value mu as u approaches 
zero.
For any particle, the correct relativistic equation for linear 
momentum that satisfies these conditions is

where u is the velocity of the particle and 
m is the mass of the particle. When u is 
much less than c,

approaches unity and p approaches mu.



Relativistic Linear Momentum and
the Relativistic Form of Newton’s Laws

The relativistic force F acting on a particle whose linear momentum 
is p is defined as

This expression, which is the relativistic form of Newton’s 
second law, is reasonable because it preserves classical 
mechanics in the limit of low velocities and is consistent with 
conservation of linear momentum for an isolated system (F=0) 
both relativistically and classically.



Relativistic Energy
We have seen that the definition of linear momentum requires 
generalization to make it compatible with Einstein’s postulates. This 
implies that most likely the definition of kinetic energy must also be 
modified. To derive the relativistic form of the work–kinetic energy 
theorem, let us imagine a particle moving in one dimension along 
the x axis. The work done by the force F on the particle is



Relativistic Energy
Evaluating the integral, we find that

the work done by a force acting on a system consisting of a single 
particle equals the change in kinetic energy of the particle. Because 
we assumed that the initial speed of the particle is zero, we know 
that its initial kinetic energy is zero. We therefore conclude that the 
work W is equivalent to the relativistic kinetic energy K:

This equation is routinely confirmed by experiments using 
high-energy particle accelerators.



Relativistic Energy



Relativistic Energy

A graph comparing relativistic and nonrelativistic kinetic 
energy of a moving particle. The energies are plotted as a 
function of particle speed u. In the relativistic case, u is 
always less than c.



Relativistic Energy

the rest energy ER of the particle

The term γmc2, which does depend on the particle speed, is 
therefore the sum of the kinetic and rest energies. We define 
γmc2 to be the total energy E:

This expression shows that a small mass corresponds to an 
enormous amount of energy, a concept fundamental to nuclear and 
elementary-particle physics.



Relativistic Energy
In many situations, the linear momentum or energy of a particle is 
measured rather than its speed. It is therefore useful to have an 
expression relating the total energy E to the relativistic linear 
momentum p.

Finally, note that because the mass m of a particle is 
independent of its motion, m must have the same value in all 
reference frames. For this reason, m is often called the 
invariant mass. On the other hand, because the total energy 
and linear momentum of a particle both depend on velocity, 
these quantities depend on the reference frame in which they 
are measured.



Relativistic Energy
When we are dealing with subatomic particles, it is convenient to 
express their energy in electron volts because the particles are 
usually given this energy by acceleration through a potential 
difference. The conversion factor is

For example, the mass of an electron is 9.11·10-31 kg. Hence, the 
rest energy of the electron is



Mass and Energy

Equation E=γmc2, which represents the total energy of a 
particle, suggests that even when a particle is at rest (γ=1) it 
still possesses enormous energy through its mass. The clearest 
experimental proof of the equivalence of mass and energy 
occurs in nuclear and elementary particle interactions in which 
the conversion of mass into kinetic energy takes place. Because 
of this, in relativistic situations, we cannot use the principle of 
conservation of energy. We must include rest energy as another 
form of energy storage.

This concept is important in atomic and nuclear processes, in 
which the change in mass is a relatively large fraction of the 
initial mass. For example, in a conventional nuclear reactor, the 
uranium nucleus undergoes fission, a reaction that results in 
several lighter fragments having considerable kinetic energy.



The General Theory of Relativity
Up to this point, we have sidestepped a curious puzzle. Mass has 
two seemingly different properties: a gravitational attraction for 
other masses and an inertial property that represents a resistance to 
acceleration. To designate these two attributes, we use the subscripts 
g and i and write

The value for the gravitational constant G was chosen to make the 
magnitudes of mg and mi numerically equal. Regardless of how G is 
chosen, however, the strict proportionality of mg and mi has been 
established experimentally to an extremely high degree: a few parts 
in 1012. Thus, it appears that gravitational mass and inertial mass 
may indeed be exactly proportional.



The General Theory of Relativity



The General Theory of Relativity



The General Theory of Relativity

The two postulates of Einstein’s general theory of relativity are
• All the laws of nature have the same form for observers in any 
frame of reference, whether accelerated or not.
• In the vicinity of any point, a gravitational field is equivalent to 
an accelerated frame of reference in the absence of gravitational 
effects. (This is the principle of equivalence.)

One interesting effect predicted by the general theory is that time 
is altered by gravity. A clock in the presence of gravity runs slower 
than one located where gravity is negligible. Consequently, the 
frequencies of radiation emitted by atoms in the presence of a 
strong gravitational field are red-shifted to lower frequencies when 
compared with the same emissions in the presence of a weak field. 
This gravitational red shift has been detected in spectral lines 
emitted by atoms in massive stars. It has also been verified on the 
Earth by comparing the frequencies of gamma rays emitted from 
nuclei separated vertically by about 20 m.



The General Theory of Relativity
The second postulate suggests that a gravitational field may be 
“transformed away” at any point if we choose an appropriate 
accelerated frame of reference—a freely falling one. Einstein 
developed an ingenious method of describing the acceleration 
necessary to make the gravitational field “disappear.” He 
specified a concept, the curvature of space–time, that describes 
the gravitational effect at every point. In fact, the curvature of 
space–time completely replaces Newton’s gravitational theory. 
According to Einstein, there is no such thing as a gravitational 
force. Rather, the presence of a mass causes a curvature of 
space–time in the vicinity of the mass, and this curvature 
dictates the space–time path that all freely moving objects must 
follow. In 1979, John Wheeler summarized Einstein’s general 
theory of relativity in a single sentence: “Space tells matter 
how to move and matter tells space how to curve.”



The General Theory of Relativity
As an example of the effects of curved space–time, imagine two 
travelers moving on parallel paths a few meters apart on the 
surface of the Earth and maintaining an exact northward heading 
along two longitude lines. As they observe each other near the 
equator, they will claim that their paths are exactly parallel. As 
they approach the North Pole, however, they notice that they are 
moving closer together, and they will actually meet at the North 
Pole. Thus, they will claim that they moved along parallel paths, 
but moved toward each other, as if there were an attractive force 
between them. They will make this conclusion based on their 
everyday experience of moving on flat surfaces. From our 
mental representation, however, we realize that they are walking 
on a curved surface, and it is the geometry of the curved surface 
that causes them to converge, rather than an attractive force. In a 
similar way, general relativity replaces the notion of forces with 
the movement of objects through curved space–time.



The General Theory of Relativity

One prediction of the general theory of relativity is that a light ray 
passing near the Sun should be deflected in the curved space–time 
created by the Sun’s mass. This prediction was confirmed when 
astronomers detected the bending of starlight near the Sun during a 
total solar eclipse that occurred shortly after World War I.



Quick Quiz 1

The following pairs of energies represent the 
rest energy and total energy of three different 
particles: particle 1: E, 2E; particle 2: E, 3E; 
particle 3: 2E, 4E. Rank the particles, from 
greatest to least, according to their (a) mass; 
(b) kinetic energy; (c) speed.


