ЛЕКЦИЯ №2 ЭКЗОГЕННЫЕ ПРОЦЕССЫ. ВЫВЕТРИВАНИЕ

- 1. Классификация экзогенных процессов
- 2. Физическое выветривание.
- 3. Химическое выветривание.
- 4. Кора выветривания.
- 5. Коры выветривания и полезные ископаемые.

1. Экзогенные процессы

На земную поверхность постоянно действуют силы, изменяющие земную кору, способствующие формированию рельефа. Все эти процессы различны, но их можно объединить в две группы: внешние (или экзогенные) и внутренние (или эндогенные). Экзогенные процессы действуют на поверхности Земли, а эндогенные — глубинные процессы, источники которых находятся в недрах планеты. Извне воздействуют на Землю силы притяжения Луны и Солнца. Сила притяжения других небесных тел очень мала, однако некоторые ученые считают, что в геологической истории Земли гравитационные воздействия из космоса могут возрасти.

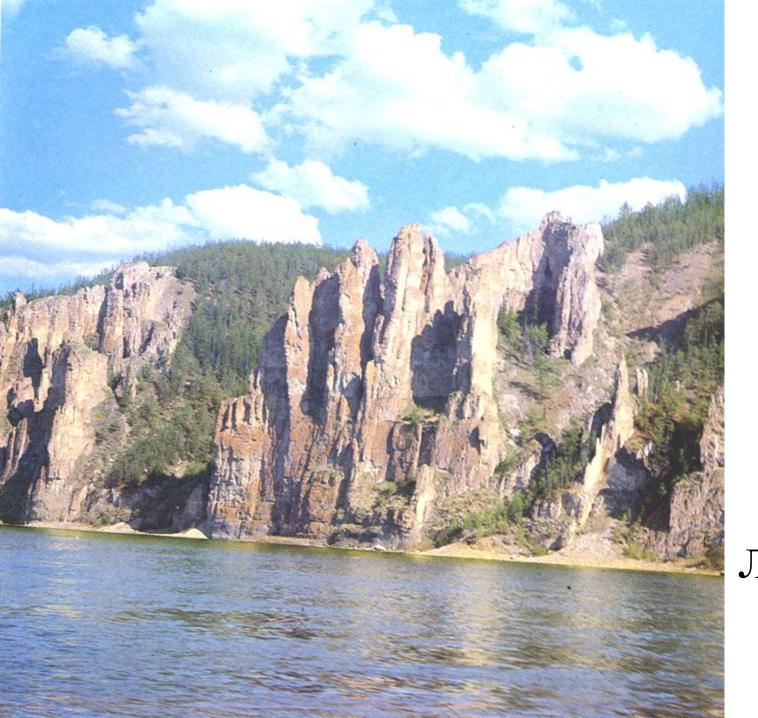
•К экзогенным силам относят и земное притяжение, из-за которого случаются оползни, обвалы в горах, двигаются с гор ледники. Экзогенные силы разрушают, преобразуют земную кору, переносят рыхлые и растворимые продукты разрушения, осуществляемого водой, ветром, ледниками. Одновременно с разрушением идет и процесс накопления, или аккумуляция продуктов разрушения. Разрушительные действия экзогенных процессов зачастую нежелательны и даже опасны для человека. К таким опасным явлениям относятся, например, селегрязекаменные потоки. Они могут сносить мосты, плотины, уничтожать посевы. Опасны и оползни, которые тоже приводят к разрушению различных построек, нанося тем самым ущерб хозяйству, унося жизни людей. Среди экзогенных процессов необходимо отметить и выветривание, которое приводит к выравниванию рельефа, а также и роль ветра.

- •Эндогенные процессы поднимают отдельные участки земной коры. Они способствуют образованию крупных форм рельефа. Главный источник энергии эндогенных процессов внутренняя теплота в недрах Земли. Эти процессы вызывают движение магмы, вулканическую деятельность, землетрясения, медленные колебания земной коры. Внутренние силы работают в недрах планеты и совершенно скрыты от наших глаз.
- •Таким образом, развитие земной коры, формирование рельефа являются результатом совместного действия внутренних (эндогенных) и внешних (экзогенных) сил и процессов. Они выступают как две противоположные стороны единого процесса. Благодаря эндогенным, в основном созидающим процессам образуются крупные формы рельефа — равнины, горные системы. Экзогенные же процессы преимущественно разрушают и выравнивают земную поверхность, но при этом формируют более мелкие (микроформы) формы рельефа — овраги, речные долины, а также накапливают продукты разрушения

Классификация экзогенных процессов

Группа	Класс	Тип	Вид
I. Обусловленные климатическими и биологическими факторами	Выветривание	Площадное Линейное	Физическое Химическое Биологическое
П. Обусловленные энергией рельефа (силой тяжести)	Движение без потери контакта со склоном или незначительной потерей его	Оползни	Сплывы Оплывины Оползни-блоки Оползни-потоки Оползни-обвалы
		Лавины	Снежные осовы Лотковые Прыгающие
	Движение с потерей контакта со склоном	Обвалы	Обвалы (собственно) Вывалы Камнепады
		Осыпи	Лотковые Площадные
		Лавины	Снежные осовы Лотковые Прыгающие
III. Обусловленные поверхностными водами	Океанов, морей и озер	Абразия Термоабразия Вдольбереговое перемещение наносов	Океанов и приливных морей Безприливных морей Озер
	Водохранилищ	Переработка берегов Заиление	Разрушение берегов осыпи, оползни) Размыв берега

Классификация экзогенных процессов (продолжение)


Группа	Класс	Тип	Вид
	Водотоков	Эрозия	Склоновая Овражная Речная
		Термоэрозия	
		Сели	Гляциальные Дождевые Таяния снега Прорывы плотин Вулканогенные
		Затопление	
IV. Обусловленные подземными водами	Растворение и выщелачивание	Карст	Карбонатный Сульфатный Соляной
	Механический вынос	Суффозия	Суффозия Подземная эрозия
	Понижение уровня подземных вод	Оседание поверхности	
Подъем уровня	Подъем уровня грунтовых вод	Подтопление	
		Засоление	
		Заболачивание	Верховые болота Переходные болота Низинные болота

Классификация экзогенных процессов (окончание)

Группа	Класс	Тип	Вид
V. Обусловленные ветром		Дефляция	Развевание Выдувание
		Корразия	
		Аккумуляция	Дюнообразование Барханообразование
VI. Обусловленные промерзанием и оттаиванием пород	Промерзание	Пучение	Сезонное Многолетние
		Морозобойное растрескивание	
		Наледи	Родниковые Речные Смешанные
	Колебания	Курумы	Каменные реки
	температуры с переходом через 0°C		Каменные моря
	Оттаивание	Термокарст	
		Солифлюкция	Быстрая Медленная
VII. Обусловленные выработкой подземного пространства	Добыча твердых полезных ископаемых и сооружение тоннелей	Проседание и провалы земной поверхности	
	Добыча нефти и газа	Оседание поверхности	

- Одним из важнейших экзогенных процессов является выветривание процесс механического разрушения и химического преобразования горных пород под влиянием агентов выветривания в термодинамической и физико-химической обстановке земной поверхности. Агентами выветривания являются солнечная инсоляция, составные части атмосферы, вода, кислоты, растительные и животные организмы.
- Различают физическое, химическое и органическое выветривание, которые обычно действуют совместно с преобладанием определенной группы факторов в зависимости от климатической обстановки.
- В результате процессов выветривания образуется особый генетический тип континентальных отложений элювий), а также различного типа почвы.

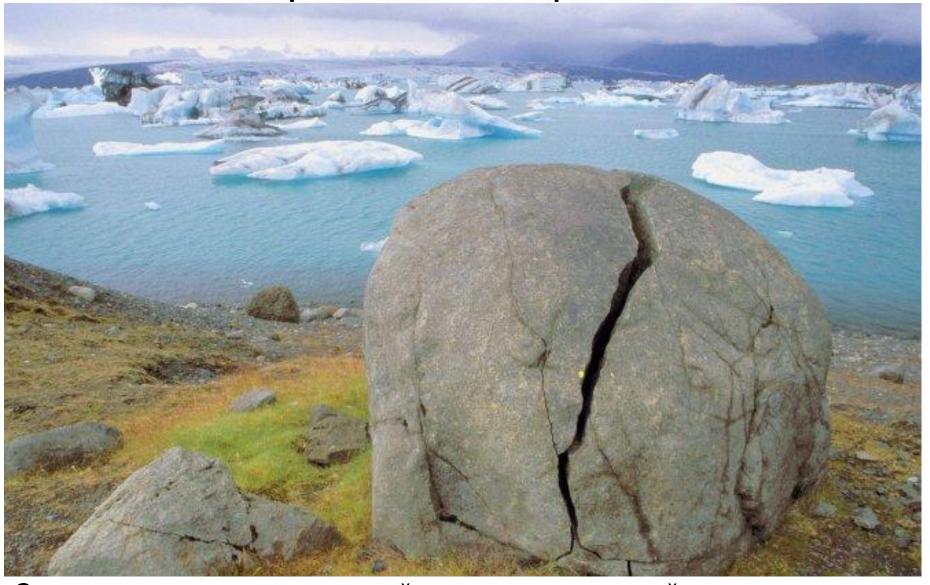
- 2. Физическое выветривание.
- Начальным этапом любого экзогенного процесса является подготовка горной породы к дезинтеграции, измельчению. Совокупность процессов, осуществляющих дезинтеграцию горных пород, называют выветриванием.
- Физическим выветриванием называется разрушение горной породы, не сопровождающаяся химическими изменениями ее состава.
- При физическом выветривании происходит растрескивание и дробление горной породы на обломки различного размера под влиянием различных физико-механических воздействий

Ленские столбы

- Выделяют температурное, морозное и солевое выветривание.
- При температурном выветривании вследствие резкого суточного колебания температур происходит попеременное нагревание (расширение) и охлаждение (сжатие) пород, неравномерные на поверхности и внутри породы, что приводит к возникновению в ней напряжений, вследствие которых порода растрескивается и шелушится (десквамация). Температурное выветривание вызывается изменением температуры. Интенсивность температурного выветривания зависит от состава породы, ее строения (текстуры и структуры), а также от окраски, трещиноватости и ряда других факторов.

Десквамация пород

Активно этот процесс протекает в тонком приповерхностном слое, в который проникают суточные колебания температуры. Наиболее интенсивно разрушаются темноокрашенные породы (сильнее нагреваются), полиминеральные (из-за различного коэффициента объемного расширения минералов), крупнозернистые. Температурное выветривание протекает наиболее активно в условиях резко континентального климата в пустынях, а также в горах (более на крутых склонах южной экспозиции), где прогревание интенсивнее и быстрее удаляются продукты разрушения.


• Большое значение при температурном выветривании имеют амплитуда и особенно скорость изменения температуры. Поэтому суточные колебания температуры при выветривании играют большее значение, нежели сезонные. Температурное выветривание наблюдается во всех климатических зонах, но наиболее интенсивно оно протекает в областях, характеризующихся резкими контрастами температур, сухостью воздуха, отсутствием или слабым развитием растительного покрова. Такими областями являются, прежде всего, тропические и внетропические пустыни. Интенсивно температурное выветривание протекает также на крутых склонах высоких гор.

Эти огромные неподвижные истуканы расположились на горе Маньпупунёр, на местности Троицко-Печерского региона Республики Коми.

- *Механическое выветривание* происходит под воздействием таких факторов, как замерзание воды в трещинах и порах горных пород, кристаллизация солей при испарении воды. Как видно из сказанного, оно тесно связано с температурным выветриванием.
- Особенно сильный и быстрый механический разрушитель горных пород — вода. При ее замерзании в трещинах и порах горных пород возникает огромное давление, в результате которого порода распадается на обломки. Это явление часто называют морозным выветриванием. Предпосылками морозного выветривания служат трещиноватость горных пород, наличие воды и соответствующие температурные условия.

Морозное выветривание

Связано с расклинивающим действием замерзающей воды в трещинах, которая при замерзании увеличивается в объеме более чем на 9%.

• "Арка" в штате Юта (США), пример механического выветривания

• Следует отметить, что интенсивность морозного выветривания определяется не амплитудой, а частотой колебания температуры около точки замерзания воды, т. е. около 0°. Вследствие этого наиболее интенсивно морозное выветривание происходит в полярных странах, а также в горных районах, преимущественно выше снеговой границы. При морозном выветривании, протекающем в условиях полярного климата, раздробление горных пород происходит вследствие механического воздействия увеличивающейся в объеме при замерзании в трещинах и порах горных пород воды. • В жарком сухом климате пустынь происходит солевое выветривание, возникающее под действием кристаллов солей, растущих в трещинах и порах горных пород, куда соль попадает с водой, поднимающейся по капиллярам из более глубоких горизонтов и испаряющейся днем. Раздробляющее действие кристаллизующихся солей заметнее наблюдается в условиях жаркого, сухого климата. Здесь днем при сильном нагревании солнцем влага, находящаяся в капиллярных трещинах, подтягивается к поверхности, и соли, содержащиеся в ней, кристаллизуются. Под давлением растущих кристаллов трещины расширяются, что приводит, в конечном счете, к нарушению монолитности горных пород, к их разрушению.

• Более или менее выположенные поверхности гор нередко бывают покрыты глыбово-щебнистыми продуктами выветривания. В то же время на горных склонах наряду с выветриванием развиваются различные гравитационные процессы: обвалы, камнепад, осыпи, оползни. Все данные об указанных гравитационных процессах детально рассмотрены в учебнике по геоморфологии. Здесь же отметим, что накопившиеся в основании склонов и у их подножий продукты гравитационных процессов (осыпей, обвалов) представляют своеобразный генетический тип континентальных отложений, называемый коллювием (от лат. «коллювио» — скопление).

- 3. Химическое выветривание. Химическое выветривание это результат взаимодействия горных пород наружной части литосферы с химически активными элементами атмосферы, гидросферы и биосферы. Сущность химического выветривания заключается в коренном изменении минералов и горных пород и образовании новых минералов и пород, отличных от первоначальных.
- Химическое выветривание приводит к изменению первичного состава минералов и горных пород, к образованию новых вторичных соединений; оно связано с климатом и происходит под действием воды, свободного кислорода, углекислого газа и органических кислот. Интенсивнее химически выветриваются породы более пористые и трещиноватые.

Химическое выветривание происходит в областях с большим количеством осадков и связано с образованием новых минералов.

• Главным фактором химического выветривания является вода, которая и сама активно воздействует на горные породы и является мощным катализатором, стимулирующим активность растворенных в ней кислорода, углекислого газа и органических веществ. Обеспечивая проникновение на глубину растворенных в ней агентов выветривания, вода вместе с тем выносит и частично переотлагает продукты химического выветривания. Скорость химического выветривания интенсивно возрастает во влажном и жарком климате, а в холодном (арктическом) и аридном климате — резко падает, ограничиваясь физическим выветриванием.

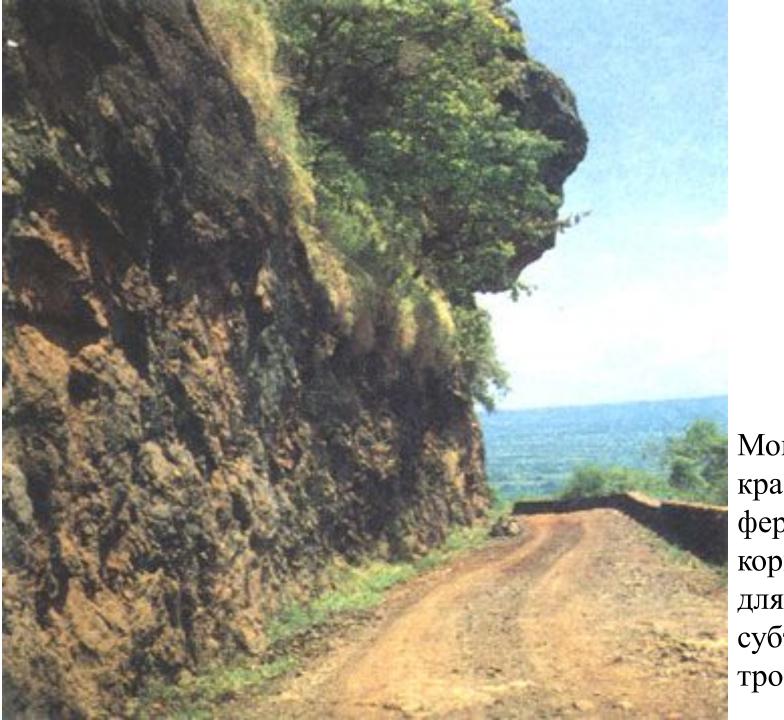
• Изменение исходных минералов и горных пород, их разрушение и разрыхление происходит в результате растворения, гидратации, окисления и гидролиза. Химическое выветривание наблюдается повсеместно. Однако наиболее интенсивно оно протекает в областях с влажным климатом и хорошо развитым растительным покровом. Интенсивность процесса резко возрастает с повышением температуры. Поэтому химическое выветривание достигает максимальной интенсивности в зоне влажных тропических лесов.

- Химическое выветривание резко замедляется в полярных областях, где средняя температура года ниже 0°. Ослаблено химическое выветривание в аридных тропических и субтропических областях вследствие малого количества осадков и на крутых склонах гор изза быстрого удаления продуктов выветривания.
- В результате химического выветривания образуются растворимые и тонкодисперсные продукты выветривания, обладающие повышенной миграционной способностью.

Окисление выражается переходом закисных низковалентных соединений в окисные высоковалентные, например, переход магнетита в гематит, пирита в лимонит. В последнем случае происходит не только окисление, но и гидратация (поглощение кристаллизационной воды). Примером гидратации является также переход гематита в лимонит, ангидрита в гипс. Растворение и гидролиз происходят под действием воды и углекислоты. Наиболее легко растворимы хлориды (NaCl, KCl и др.), затем сульфаты (гипс) и карбонаты (известняки, доломиты мергели).

• Особая роль *биосферы* в геологических процессах была отмечена в работах крупнейшего русского ученого В. И. Вернадского. Он ввел понятие о «живом веществе» как перманентном геологическом деятеле, как аккумуляторе и перераспределителе Солнечной энергии. Он писал: «Захватывая энергию Солнца, живое вещество создает химические соединения, при распадении которых эта энергия освобождается в форме, могущей производить химическую работу»; «живое вещество есть форма активизированной материи и эта энергия тем больше, чем больше масса живого вещества».

4. Кора выветривания. В результате единого и сложного взаимосвязанного процесса разрушения горных пород образуются различные продукты выветривания. Остаточные или несмещенные продукты выветривания, остающиеся на месте разрушения материнских горных пород, представляют собой тип континентальных образований и называются элювием. Кора выветривания объединяет всю совокупность различных элювиальных образований. Такая остаточная кора выветривания называется автоморфной (греч. «аутос» - сам). Помимо первичной автоморфной коры выветривания выделяют вторичную, или гидроморфную кору выветривания, образующуюся в результате выноса почвенными и грунтовыми водами химических элементов в виде истинных и коллоидных растворов в ходе формирования первичной автоморфной коры.



В результате взаимосвязанного и сложного процесса выветривания образуются различные продукты выветривания называемые корой выветривания.

- В зависимости от климатической обстановки элювиальный процесс протекает по-разному, в связи с чем образуются различные типы коры выветривания.
- 1. В областях полярного и нивального климата господствует морозное выветривание. Образуется обломочный криогенный элювий.
- 2. В условиях аридного климата пустынь, где из-за недостатка воды миграция активных веществ очень ограничена, элювиальный покров формируется в основном вследствие физического выветривания. Представлен элювий обломочным материалом из глыб, щебня и дресвы разрушенных материнских пород. Химическое выветривание проявляется локально, в виде корок пустынного загара, гипсовых корок и солончаков.

- •3. В полузасушливых (семиаридных) областях физическое выветривание приводит к образованию пылеватых частиц, возникает кора выветривания, обогащенная карбонатами. Мощность коры выветривания небольшая, окраска светлая, желтовато-серая.
- •4. В областях с гумидным (влажным) и теплым климатом кора выветривания достигает полного развития.
- Происходит интенсивный вынос подвижных продуктов выветривания, способствующий гидролизу силикатов, превращению их в глинистые минералы с выщелачиванием оснований и установлением кислой реакции среды. Возникший при выветривании богатых алюмосиликатами магматических и метаморфических пород (гранитов, гнейсов и др.) каолинит может образовать месторождения каолина.

• 5. В условиях жаркого и влажного климата происходит дальнейшее разложение и достаточно устойчивых алюмосиликатов на гидраты окиси алюминия и железа, которые образуют латеритную кору выветривания. Образовавшиеся при этом бокситы могут достигать промышленных скоплений. Кора выветривания здесь окрашена в яркие красные и оранжевые тона.

Мощные красноцветные ферраллитные коры типичны для влажных субтропиков и тропиков

• Среди кор выветривания выделено два основных морфогенетических типа: площадной и линейный. Площадные коры выветривания развиваются в виде покрова или плаща, занимают местами обширные площади до десятков и сотен квадратных километров, представляющие различные выровненные тектонически спокойные поверхности рельефа. Линейные коры выветривания имеют линейное распространение в плане и приурочены к зонам повышенной трещиноватости, к разломам и контактам различных по составу и генезису горных пород. В этих условиях происходит более свободное проникновение воды и связанных с ней химически активных компонентов, что вызывает интенсивный процесс химического выветривания.

- 5. Коры выветривания и полезные ископаемые.
- Изучение строения кор выветривания имеет большое значение. С корами выветривания различного возраста связано много разнообразных и ценных полезных ископаемых — бокситов, железных руд, марганца, руд никеля, кобальта и др. При этом в отдельных случаях в древних корах выветривания металлы накапливаются в значительно большем количестве, чем в исходной породе, и приобретают промышленное значение. Так образовались месторождения никеля, кобальта и других металлов в древней коре выветривания Урала. Сюда следует также отнести различные виды глинистых образований кор выветривания, многие из которых являются керамическим и огнеупорным сырьем, обладают отбеливающими и другими свойствами.