Регулирующая и направляющая аппаратура Общие сведения о гидроаппаратуре

Гидроаппаратом называется устройство, предназначенное для изменения направления потока рабочей жидкости или изменения, поддержания заданного давления или расхода рабочей жидкости.

Гидроаппаратура подразделяется на регулирующую и направляющую.

Регулирующая гидроаппаратура изменяет давление, расход и направление потока рабочей жидкости за счет <u>частичного открытия</u> рабочего проходного сечения.

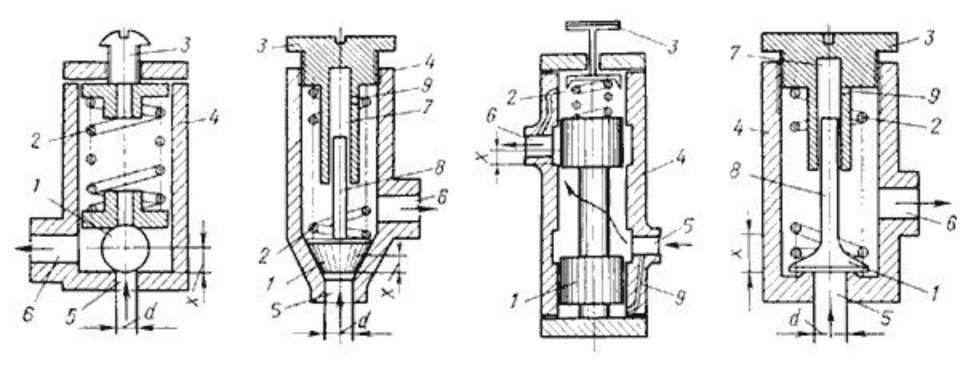
Направляющая гидроаппаратура предназначена только для изменения направления потока рабочей жидкости путем <u>полного открытия</u> или закрытия рабочего проходного сечения.

Рабочее проходное сечение гидроаппаратов изменяется при изменении положения *запорно-регулирующего элемента*, входящего в их конструкцию.

ГИДРОКЛАПАНЫ

Гидроклапаном называется гидроаппарат, в котором величина открытия рабочего проходного сечения изменяется от воздействия проходящего через него потока рабочей жидкости.

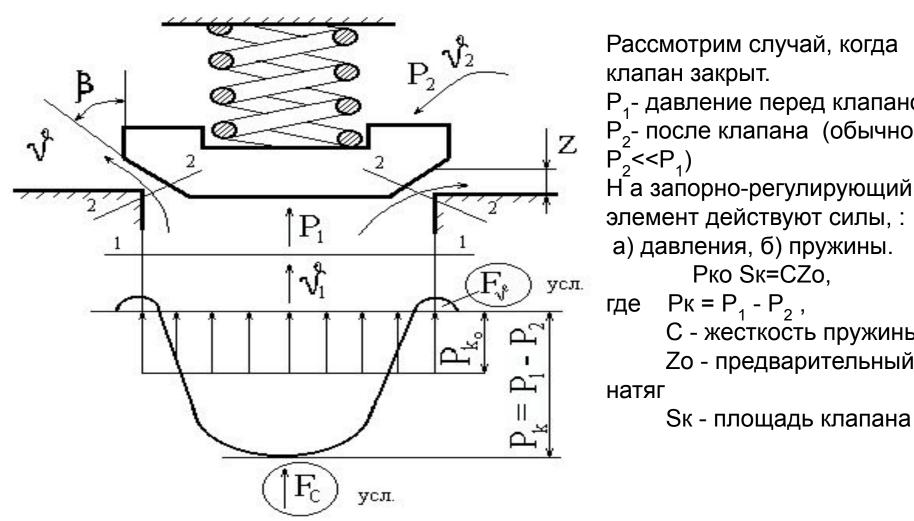
По характеру воздействия на запорно-регулирующий элемент гидроклапаны могут быть прямого и непрямого действия.


В гидроклапанах прямого действия величина открытия рабочего проходного сечения изменяется в результате непосредственного воздействия потока рабочей жидкости на запорно-регулирующий элемент.

В гидроклапанах непрямого действия поток сначала воздействует на вспомогательный запорно-регулирующий элемент, перемещение которого вызывает изменение положения основного запорно-регулирующего элемента.

Напорные гидроклапаны

предназначены для ограничения давления в подводимых к ним потоках рабочей жидкости. P1 ≤ Pмакс.


Принципиальные схемы напорных клапанов прямого действия с шариковым, конусным, плунжерным и тарельчатым запорно-регулирующими элементами.

Клапан состоит из запорно-регулирующего элемента **1** (шарика, конуса и т.д.), пружины **2**, натяжение которой можно изменять регулировочным винтом **3**. Отверстие **5** корпуса **4** соединяется с линией высокого давления, а отверстие **6** - со сливной линией. Часть корпуса, с которой запорно-регулирующий элемент клапана приходит в соприкосновение, называется седлом (посадочным местом)

Достоинство клапанов прямого действия - высокое быстродействие. Недостаток увеличение размеров при повышении рабочего давления, а также нестабильность работы.

Расчет клапанов

Рассмотрим случай, когда клапан закрыт. Р₁- давление перед клапаном, P_{2} - после клапана (обычно Н а запорно-регулирующий элемент действуют силы, : а) давления, б) пружины. Pко Sк=CZo, $PK = P_1 - P_2,$ С - жесткость пружины, Zo - предварительный

Условием подъема клапана является превышение сил гидростатического давления над силами пружины.

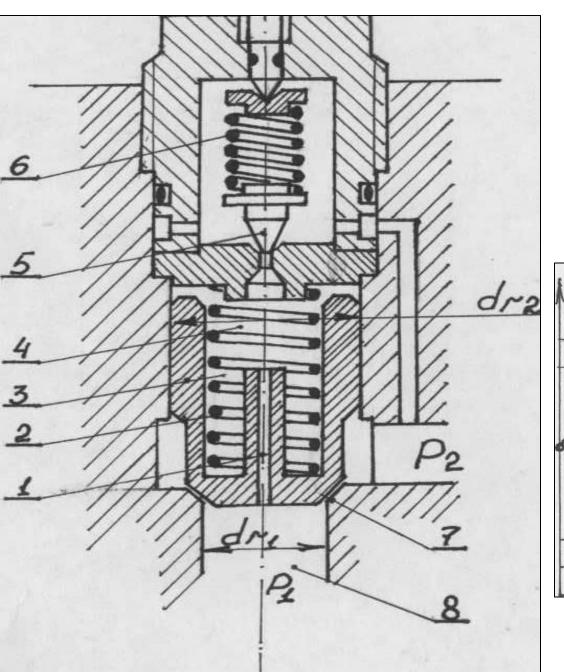
При подъеме клапана на высоту Z увеличивается усилие пружины.

Клапан не опустится, не захлопнется если Pk > Pko.

За счет движения жидкости эпюра давления под клапаном изменит свой вид и условие равновесия запорно-регулирующего элемента примут вид:

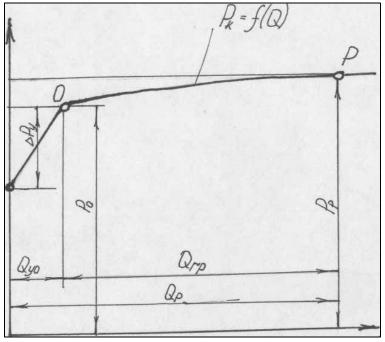
$$C(Z_0 + Z) = PkSk - Fu + Fc,$$

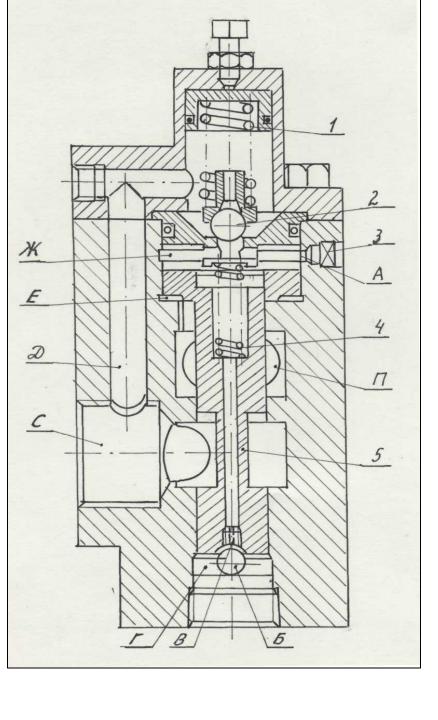
где Fu - Усилие динамического воздействия на клапан,


Fc - Изменение усилия от гидростатического давления на клапан

Давление перед клапаном, в гидросистеме определяется нагрузкой (крутящим моментом на валу мотора, усилием на штоке гидроцилиндра). Если это давление превышает P_{ko} , то клапан открывается и часть подачи насоса сбрасывается через клапан. Чем больше давление перед клапаном, тем больший расход проходит через клапан.

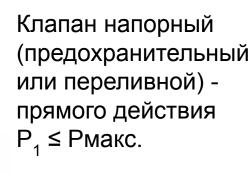
При использовании клапанов в качестве предохранительных и переливных устройств, разность давлений при котором клапан пропускает максимальный расход и включается в работу, должна быть минимальной.


Для этой цели используют клапаны в которых при возрастании расхода и поднятии клапана, создается дополнительная сила Fд поднимающая клапан и компенсирующая возрастающее при подъеме усилие пружины. Клапаны такого типа имеют более, пологую, выровненную характеристику.


Клапан непрямого действия состоит из двух клапанов

основного 3 и управляющего 5

1- дроссель, 2-пружина, 3-основной запорно-регулирующий элемент, 4- заклапанная полость, 5- управляющий клапан, 6- пружина управляющего клапана, 7- седло, 8- подводящая полость.

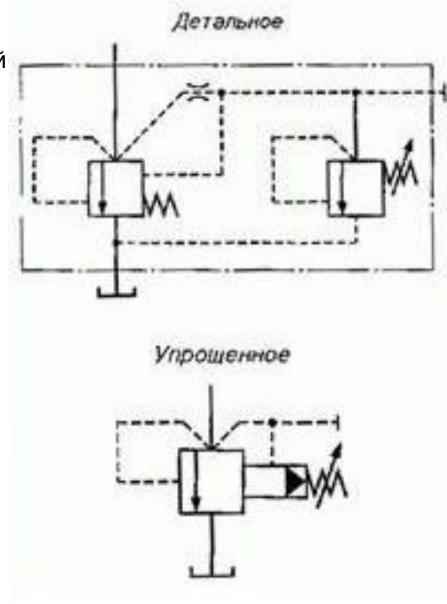

Клапан непрямого действия БГ52 - 1

Отверстие между камерой подвода рабочей жидкости П и камерой слива С постоянно перекрыто плунжером 5. Камера П через каналы и отверстие Б соединена с камерами Г и Е под плунжером, а через жиклер В -с камерой Ж над плунжером.

При аварийном повышении давления в камере Ж сначала поднимается шариковый клапан 2, открывая слив рабочей жидкости из камеры Ж, что вызывает быстрое падение давления над плунжером. Плунжер поднимается и открывает проход рабочей жидкости из напорной гидролинии в сливную.

Для разгрузки гидросистемы камеру Ж через отверстие А соединяют со сливной гидролинией, давление над плунжером 5 падает, он смещается вверх, соединяя напорную гидролинию со сливной.

Условные обозначения напорных клапанов

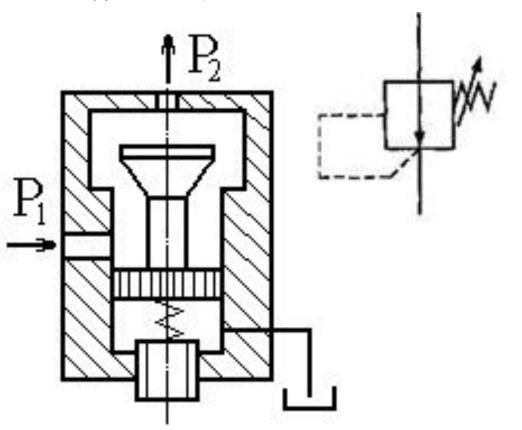


Клапан прямого - действия с дистанционным управлением гидравлический

Клапан разности давлений $P_1 - P_2 = Const$

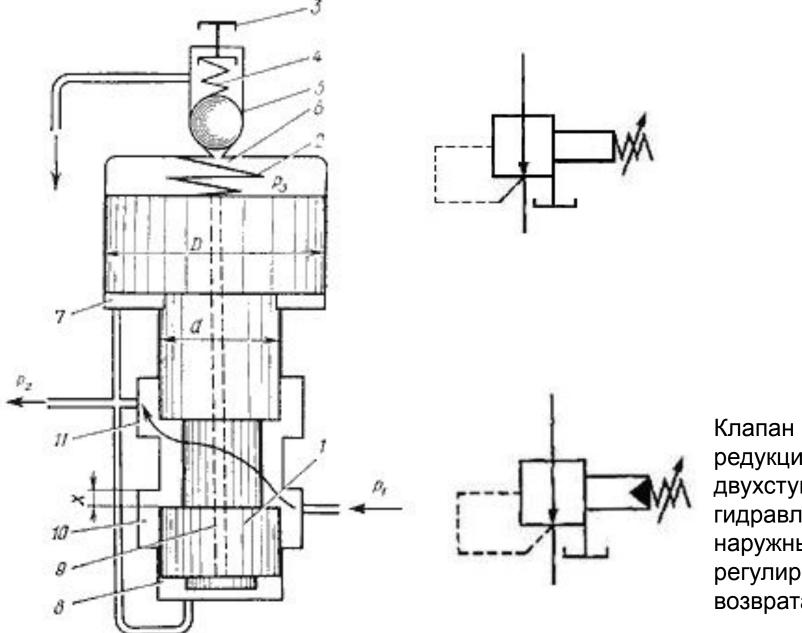
Клапан соотношения давлений

P1 / P2=Const


непрямого действия-с обеспечением дистанционного управления

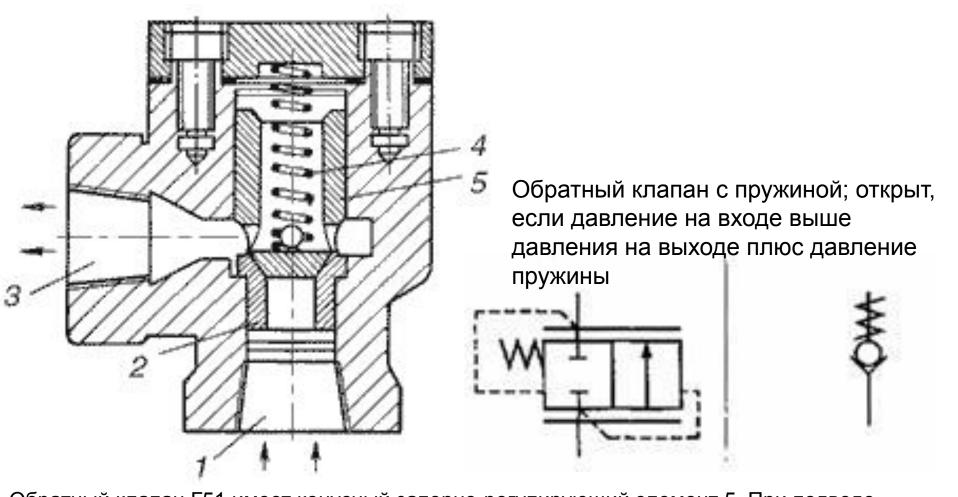
клапаны непрямого действия обладают рядом преимуществ:

- 1. Плавность и бесшумность работы.
- 2. Повышенная чувствительность.
- 3. Давление на входе в клапан поддерживается постоянным и не зависит от расхода рабочей жидкости через клапан.

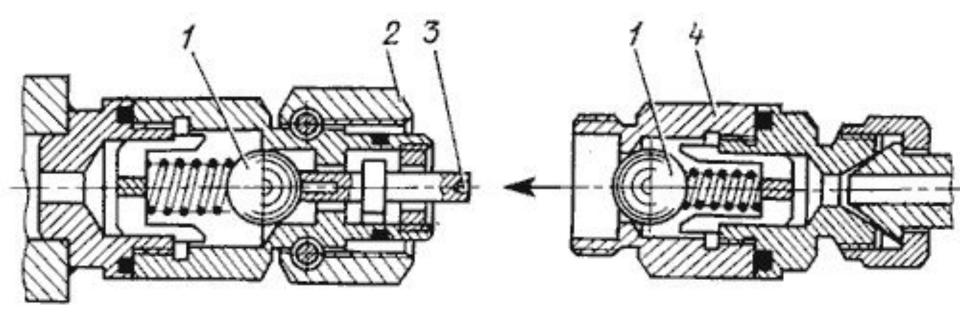

Редукционный клапан.

ограничивает давление в отводимом от него потоке жидкости и предназначен для подключения к основной системе гидрооборудования работающего при более низком давлении, чем в основной.

Клапан редукционный: одноступенчатый, нагруженный пружиной P_2 = Const при $P_1 > P_2$

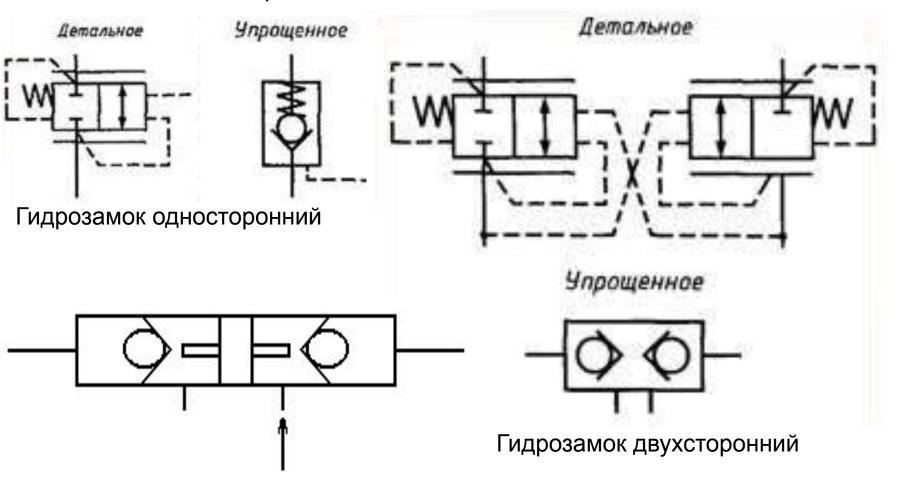

Редукционный клапан непрямого действия

Клапан редукционный двухступенчатый, гидравлический, с наружным регулированием возврата


Обратные гидроклапаны

Обратным гидроклапаном называется направляющий гидроаппарат, предназначенный для пропускания рабочей жидкости только в одном направлении

Обратный клапан Г51 имеет конусный запорно-регулирующий элемент 5. При подводе рабочей жидкости к отверстию 1 запорно-регулирующий элемент 5 поднимается над седлом 2, преодолевая силу натяжения пружины 4. Жидкость свободно проходит к отверстию 3. При изменении направления потока рабочей жидкости запорно- регулирующий элемент 5 прижат к седлу и блокирует отверстие 1.


В гидросистемах многих мобильных машин обратные клапаны с шариковым рабочим органом применяют в блокировочном устройстве резиновых шлангов


Блокировочное устройство имеет подпружиненные шарики 1, которые при разъединении трубопроводов блокируют поток. При соединении труб путем навинчивания гайки 2 на штуцер 4 толкатель 3 отжимает шарики от их седел, позволяя жидкости свободно проходить через устройство.

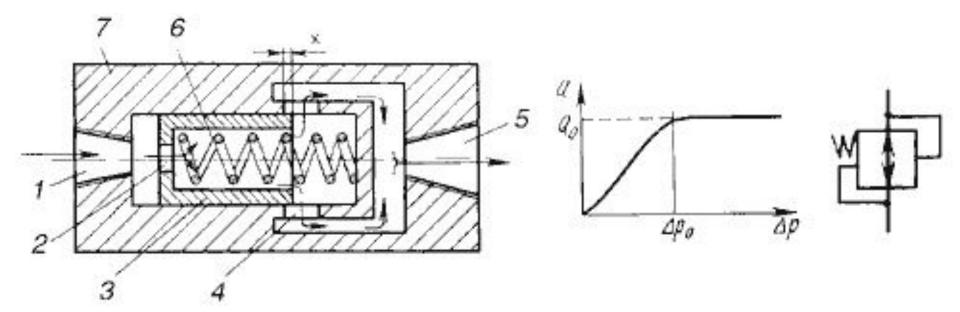
Обратные управляемые клапаны (гидрозамки).

Гидрозамки предназначены для предотвращения самопроизвольного движения выходных звениев гидропривода под нагрузкой. Гидрозамки устанавливают последовательно с гидродвигателем.

При подаче рабочей жидкости под давлением в гидрозамок она свободно проходит через правый обратный клапан и подается на вход гидродвигателя. Одновременно жидкость под давлением воздействует на поршень гидрозамка, который штоком открывает левый обратный клапан, обеспечивая слив рабочей жидкости из гидродвигателя.

Схема установки одностороннего гидрозамка:

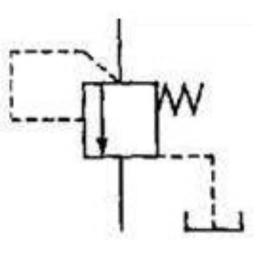
а - без дросселя с обратным клапаном; б - дросселем прекращается. Затем давление в напорной гидролинии и в гидроли и обратным клапаном


Для исключения этого явления между гидрозамком и гидроцилиндром рекомендуется устанавливать дроссель с обратным клапаном б), сопротивление которого при опускании штока создает давление, необходимое для открытия обратного клапана гидрозамка и поддержания его в том положении.

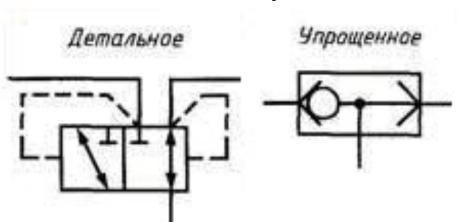
а) при перемещении золотника гидрораспределителя в позицию "опускание" в гидролинии насоса и управления гидрозамком создается давление, достаточное для открытия гидрозамка. После его открытия рабочая жидкость из штоковой полости гидроцилиндра поступает на слив, и шток опускается под действием внешней нагрузки *F*. При этом скорость перемещения штока гидроцилиндра может превысить скорость, обусловленную подачей насоса. Тогда давление в противоположной (поршневой) полости гидроцилиндра и в гидролинии управления уменьшается, запорный элемент гидрозамка под действием пружины закрывается и движение напорной гидролинии и в гидролинии управления снова возрастает, и гидрозамок открывается. Таким образом, происходят прерывистое движение рабочего органа и пульсация давления.

Рассмотрите случай, когда гидрозамка нет вовсе.

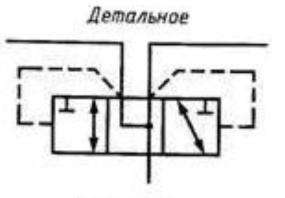
Ограничители расхода


Ограничителем расхода называется клапан, предназначенный для ограничения расхода в гидросистеме или на каком-либо ее участке.

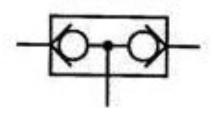
Он состоит из подвижного поршня 3 и нерегулируемой пружины 6, помещенных внутри корпуса 7. В поршне имеется калибровочное отверстие 2 (нерегулируемый дроссель), а корпусе - окна 4. В сочетании с поршнем 3 окна 4 представляют собой регулируемый дроссель. В исходном положении пружина стремится передвинуть поршень в крайнее левое положение и открыть окна 4. При включении ограничителя расхода в гидросистему жидкость поступает в отверстие 1 и далее проходит через дроссель 2 и окна 4 к отверстию 5. При двиижении жидкости через ограничитель расхода у дросселя 2 создается перепад давлений. При увеличении расхода перепад давлений увеличивается и поршень перемещается вправо, частично или полностью перекрывая окна 4. Когда расход в гидросистеме уменьшится, перепад давлений также уменьшится и поршень переместится влево, увеличив открытие окон.


Гидроклапан последовательности включения.

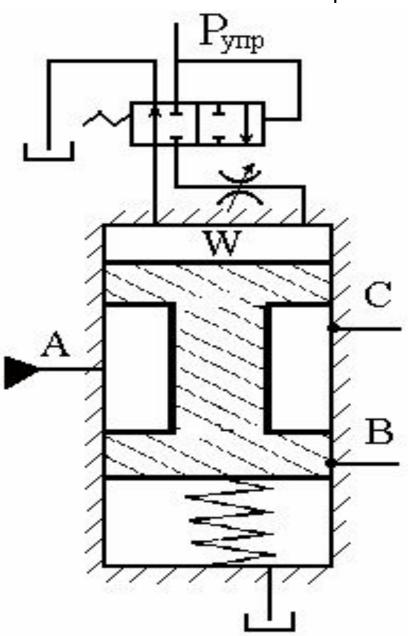
Принцип действия аналогичен с предохранительным, но предохранительный клапан отправляет жидкость на слив, а клапан последовательности включения направляет ее в гидроаппараты при достижении в системе определенного давления.


Клапан последовательности, одноступенчатый, нагруженный пружиной, на выходе может поддерживаться давление, с наружным дренажом

Гидроклапан логический "или".


Входная линия, соединенная с более высоким давлением, автоматически соединяется с выходом в то время как другая входная линия закрыта.

Гидроклапан логический "и"


Выходная линия находится под давлением только тогда, когда обе входные линии под давлением

Упрощенное

Гидроклапан выдержки времени

обеспечивает включение потребителей через заданный промежуток времени.

Потребитель будет подключен к гидролинии при определенном положении золотника, которое зависит от объема жидкости, поступившего в камеру через дроссель. Пусть для подключения потребителя необходимо подать в камеру объем W. Выдержка времени t составит:

$$t = W / Q_{\mu\rho}$$
,

где Q др – расход жидкости через дроссель

$$Q_{_{\text{дp}}} = \mu \cdot S_{_{\text{дp}}} \sqrt{\frac{2 \cdot P_{_{\text{дp}}}}{\rho}}$$

$$t = \frac{W}{Q_{_{\text{дp}}}} = \frac{W}{\mu \cdot S_{_{\text{дp}}} \sqrt{\frac{2 \cdot P_{_{\text{дp}}}}{\rho}}}$$