

План лекции

- Основные эндокринные оси
- Гипоталамо-гипофизарно-тиреоидная ось
- Физиологические эффекты гормонов щитовидной железы
- Гипоталамо-гипофизарно-надпочечниковая ось
- Гипоталамо-гипофизарно-гонадная ось
- Гормоны поджелудочной железы
- Гормональная регуляция обмена кальция

ПРЯМЫЕ И ОБРАТНЫЕ СВЯЗИ В РЕГУЛЯЦИИ ЭНДОКРИННЫХ ЖЕЛЕЗ

Обратные связи

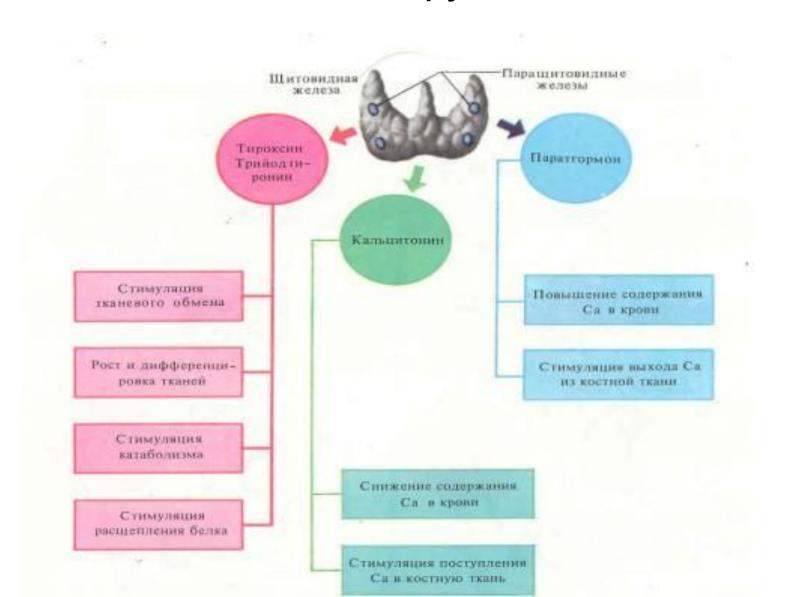
Основные эндокринные оси

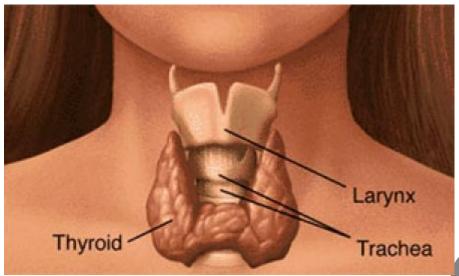
- Гипоталамус аденогипофиз щитовидная железа
- Гипоталамус аденогипофиз кора надпочечников (пучковая и сетчатая зоны)
- Гипоталамус аденогипофиз половые железы

Железы, относительно не зависимые от гипоталамогипофизарной системы

- Поджелудочная железа
- Паращитовидная железа
- Клубочковая зона коры надпочечников
- Парафолликулярные клетки щитовидной железы

ГИПОТАЛАМО-АДЕНОГИПОФИЗАРНО-ТИРЕОИДНАЯ ОСЬ


ГИПОТАЛАМУС


ТАДЕНОГИПОФИЗ

ТЩИТОВИДНАЯ ЖЕЛЕЗА

Гормоны щитовидной и паращитовидных желез и их функции

СИНТЕЗ И СЕКРЕЦИЯ ГОРМОНОВ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

- 1. Захват тироцитами йодида из плазмы крови
- 2. Окисление йодида пероксидазой тироцитов
- 3. Йодирование тироглобулина с образованием моно-и дийодтирозинов
- 4. Конденсация йодотирозинов с образованием три и тетрайодтиронинов
- 5. Накопление тиронинов в коллоиде
- 6. Эндоцитоз коллоида тироглобулина через апикальную мембрану тироцитов
- 7. Гидролиз тироглобулина протеазой тироцитов
- 8. Секреция йодотиронинов в кровь

ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

- СВОБОДНЫЙ $T_{A} = 0.05\%$
- СВЯЗАННЫЙ С БЕЛКАМИ $T_4 = 99,95\%$ ТИРОКСИН-СВЯЗЫВАЮЩИЙ ГЛОБУЛИН 75%
 ТИРОКСИН-СВЯЗЫВАЮЩИЙ ПРЕАЛЬБУМИН 15-20%
 АЛЬБУМИН ОКОЛО 9%
- СВОБОДНЫЙ $T_3 = 0.5 \%$
- **СВЯЗАННЫЙ С БЕЛКАМИ** $T_3 = 99,5$ ТИРОКСИН-СВЯЗЫВАЮЩИЙ ГЛОБУЛИН 99,499% АЛЬБУМИН 0,001%

ФИЗИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ГОРМОНОВ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

- Повышение энергетического обмена в тканях и основного обмена организма
- Повышение размеров и числа митохондрий, окислительных ферментов в клетках
- Повышение активности Na+ K+ насосов и возбудимости
- Повышение термогенеза в тканях и температуры тела
- Увеличение экспрессии генов, иРНК и синтеза белка
- Обеспечение роста костей и созревания, особенно, мозга
- Обеспечение нормальной генеративной функции
- Обеспечение нормальной лактации
- Обеспечение синтеза бета-адренорецепторов, подавление активности МАО, повышение эффектов симпатической регуляции

МЕТАБОЛИЧЕСКИЕ ЭФФЕКТЫ ТИРЕОИДНЫХ ГОРМОНОВ

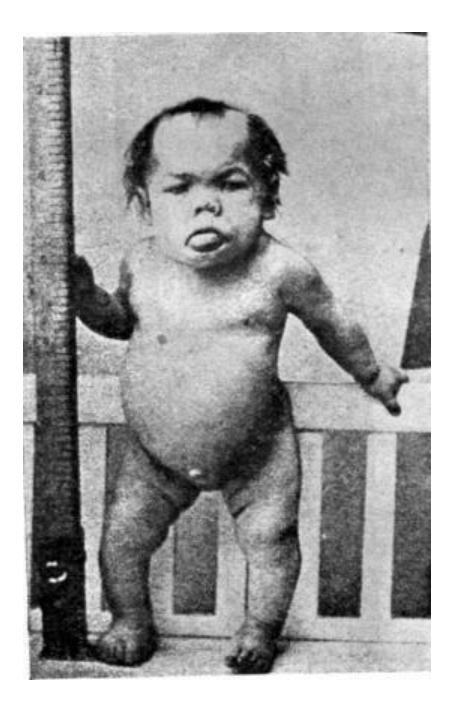
• УГЛЕВОДНЫЙ ОБМЕН

- **-**АКТИВАЦИЯ ВСАСЫВАНИЯ ГЛЮКОЗЫ В КИШЕЧНИКЕ
- АКТИВАЦИЯ ГЛИКОГЕНОЛИЗА И ГЛИКОЛИЗА В ПЕЧЕНИ
- ПОТЕНЦИРОВАНИЕ ЭФФЕКТОВ ИНСУЛИНА
- АКТИВАЦИЯ УТИЛИЗАЦИИ ГЛЮКОЗЫ В МЫШЦАХ И ЖИРОВОЙ ТКАНИ

• ЖИРОВОЙ ОБМЕН

- МОБИЛИЗАЦИЯ ЖИРА (ЛИПОЛИЗ) ИЗ ЖИРОВОЙ ТКАНИ, УМЕНЬШЕНИЕ ЕЕ МАССЫ
- АКТИВАЦИЯ СИНТЕЗА, КОНЦЕНТРАЦИИ И ЭСТЕРИФИКАЦИИ ТРИГЛИЦЕРИДОВ АКТИВАЦИЯ СИНТЕЗА И ОКИСЛЕНИЯ ХОЛЕСТЕРИНА СНИЖЕНИЕ УРОВНЯ ХОЛЕСТЕРИНА В СЫВОРОТКЕ КРОВИ АКТИВАЦИЯ РАЗРУШЕНИЯ СТЕРОИДНЫХ ГОРМОНОВ В ПЕЧЕНИ

• БЕЛКОВЫЙ ОБМЕН


- АКТИВАЦИЯ СИНТЕЗА БЕЛКА В МИОКАРДЕ И СКЕЛЕТНЫХ МЫШЦАХ
- АКТИВАЦИЯ ПРОТЕОЛИЗА В ДРУГИХ ТКАНЯХ
- ПОДАВЛЕНИЕ СИНТЕЗА ГЛИКОАМИНОГЛИКАНОВ

МЕТАБОЛИЧЕСИКЕ ЭФФЕКТЫ ИЗБЫТКА ТИРЕОИДНЫХ ГОРМОНОВ

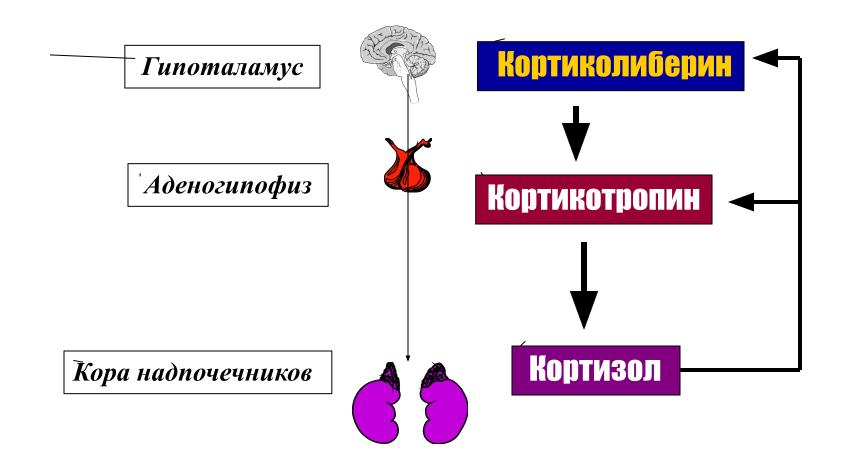
- ПРОТЕОЛИЗ
- ГИПЕРГЛИКЕМИЯ
- ЛИПОЛИЗ
- ГИПЕРЛИПАЦИДЕМИЯ

ОСНОВНЫЕ ПРОЯВЛЕНИЯ ГИПЕР- И ГИПОТИРЕОЗА

ОРГАНЫ И СИСТЕМЫ	ги пертире оз	гипотиреоз
основной обмен	ПОВЫШЕН	СНИЖЕН
	β-адре-	Активация <i>α</i> -адре-
Активация	нореактивности	нореактивности
КРОВООБРАЩЕНИЯ	Тахикардия,	Брадикардия
	пульсового	вазоконстрик-
рост	вазоди	ция, рост АД
давления,	латация	
КОЖА И ПОТОВЫЕ	Горячая, влажная	Сухая, отечная
железы тк	лливость >	ол юдіная
LUIG B	L	D
	здражительносте-	Вя спеце
дрожь, чувство	лода, страха	агнетита
		Мьшечная
МЬЩЦЫ	Мьшечная	слабость(
слабость	(Низкий
катаболизм)	синтез)	
МАССА ТЕПА Снижае	тся Повышается	
	моторика	
жкт	ктивация	моторики, запоры
поносы		
дьхание	я Ге <u>фулитиен</u> ция двентил	- Снижение венти- ляции легких, нако- пление жидкости в
плевре		
	↑для кортизола	Т
КЛИРЕНС	↓	для половых
гормонов и		гфрмонов,
витаминов	↑для витаминов и	AUSTABATER MARKETERS
пекарств	TOKCIA-HOCTI-	

- Кретинизм
- 18-летняя девушка

МИКСЕДЕМА ИЛИ ГИПОТИРЕОЗ



Экзофтальм (пучеглазие) при гипертиреозе

ГИПОТАЛАМО-АДЕНОГИПОФИЗАРНО-НАДПОЧЕЧНИКОВАЯ ОСЬ

ГОРМОНЫ НАДПОЧЕЧНИКА

ОСНОВНЫЕ ГОРМОНЫ КОРЫ НАДПОЧЕЧНИКОВ

- <u>КЛУБОЧКОВАЯ ЗОНА:</u> МИНЕРАЛОКОРТИКОИДЫ: АЛЬДОСТЕРОН
- <u>пучковая зона:</u> глюкокортикоиды: кортизол/кортикостерон = 5:1
- <u>СЕТЧАТАЯ ЗОНА:</u> АНДРОГЕНЫ: ДЕГИДРОЭПИАНДРОСТЕРОН (ДГЭА), ДГЭА-СУЛЬФАТ, АНДРОСТЕНДИОН

ОСНОВНЫЕ ЭФФЕКТЫ МИНЕРАЛОКОРТИКОИДОВ

- АКТИВАЦИЯ КАНАЛЬЦЕВОЙ РЕАБСОРБЦИИ Na и СЕКРЕЦИИ К
- ПОДДЕРЖАНИЕ ОСМОТИЧЕСКОГО ДАВЛЕНИЯ, ВОЗБУДИМОСТИ КЛЕТОК, АРТЕРИАЛЬНОГО ДАВЛЕНИЯ
- РЕГУЛЯЦИЯ ИОННОГО ТРАНСПОРТА В ПОТОВЫХ И СЛЮННЫХ ЖЕЛЕЗАХ И ЖЕЛУДОЧНО-КИШЕЧНОМ ТРАКТЕ
- ПРИ ИЗБЫТКЕ ГИПЕРВОЛЕМИЯ, ГИПЕРТЕНЗИЯ, ОТЕКИ, ГИПОКАЛИЕМИЯ, АЛКАЛОЗ, НАРУШЕНИЯ СЕРДЕЧНОГО РИТМА, ПОВЫШЕНИЕ ЭКСКРЕЦИИ МАГНИЯ И КАЛЬЦИЯ
- ПРИ НЕДОСТАТКЕ ГИПОВОЛЕМИЯ, ГИПОТЕНЗИЯ, ГИПЕРКАЛИЕМИЯ, АЦИДОЗ, НАРУШЕНИЯ СЕРДЕЧНОГО РИТМА, МОЗГОВЫЕ НАРУШЕНИЯ, ИЗБЫТОК ВАЗОПРЕССИНА, НАРУШЕНИЯ ПИЩЕВАРЕНИЯ

Функции глюкокортикоидов

Место приложения	Действие
Углеводный обмен	Повышают концентрацию глюкозы в крови за счет увеличения скорости глюконеогенеза в печени, снижения утилизации глюкозы на периферии, стимуляции освобождения аминокислот (субстрата глюконеогенеза) в мышцах
Белковый обмен	Усиливают распад белка и тормозят его синтез
Липидный обмен	Усиливают липолиз в области верхних и нижних конечностей и липогенез в других частях тела (туловище и лицо)
Обмен кальция	Подавляют активность витамина D, обусловливая уменьшение всасывания ионов кальция и увеличение его экскреции
Иммунная система	В высоких дозах оказывают иммуносупрессивное действие
Воспаление	Обладают противовоспалительным эффектом
	При длительном применении ингибируют синтетическую активность фибробластов, хондробластов и остеобластов, способствуя истончению кожи и остеопорозу
	Вызывают атрофию мышц и мышечную слабость при длительном применении
Секреторная функция желудка	Усиливают секрецию соляной кислоты и пепсинов

Девочка с повышенной функцией глюкокортикоидов - болезнь Иценко-Кушинга фото из

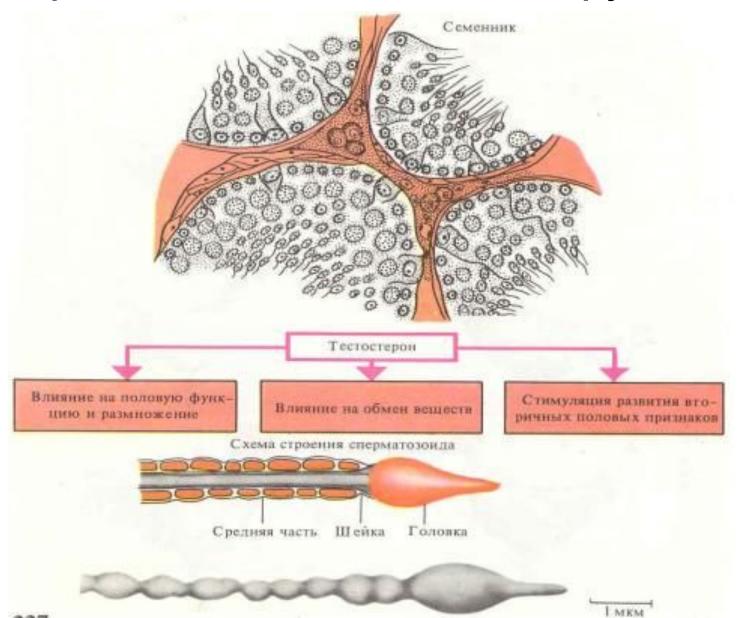
архива Клиники детских болезней)

ГИПОТАЛАМО-АДЕНОГИПОФИЗАРНО-ГОНАДНАЯ

ГОНАДОЛИБЕРИНЫ ГИПОТАЛАМУС ФОЛЛИЛИБЕРИН **ЛЮЛИЛИБЕРИН ГОНАДОТРОПИНЫ АДЕНОГИПОФИЗ** ФОЛЛИТРОПИН **ЛЮТРОПИН** ГОНАДЫ **ЭСТРОГЕЙЬ** ПРОГЕСТЕРОН АНДРОГЕНЫ ИНГИБИН ОРГАНЫ МИШЕНИ

Половые железы и их гормоны.

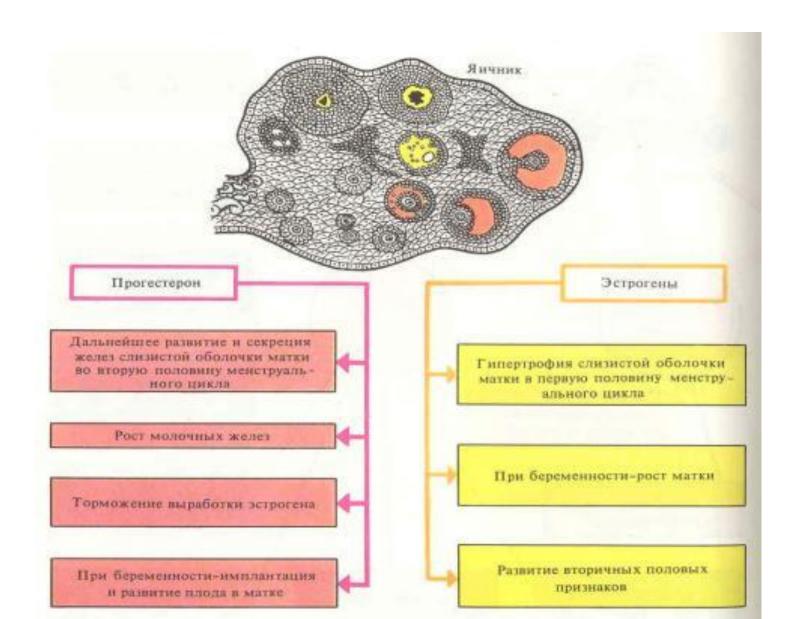
Половые железы являются местом образования половых клеток - сперматозоидов у мужчин и яйцеклеток у женщин и обладают внутрисекреторной функцией, выделяя в кровь половые гормоны.



Физиологическая роль половых гормонов.

- -эти гормоны необходимы для полового созревания
- -благодаря этим гормонам осуществляется развитие вторичных половых признаков
- женские половые гормоны играют большую роль в возникновении половых циклов, в обеспечении нормального протекания беременности и в подготовке к кормлению новорождённого.

Гормоны семенника и их функции



МУЖСКИЕ ПОЛОВЫЕ ГОРМОНЫ

- КЛЕТКИ СЕРТОЛИ
- TECTOCTEPOH
- Половая дифференцировка в онтогенезе
- Регуляция полового поведения
- Развитие половых признаков
- Регуляция сперматогенеза
- Анаболический эффект на скелет и мускулатуру тела
- Задержка в организме азота, К,
 Р и кальция
- Активация синтеза РНК
- Стимуляция эритропоэза

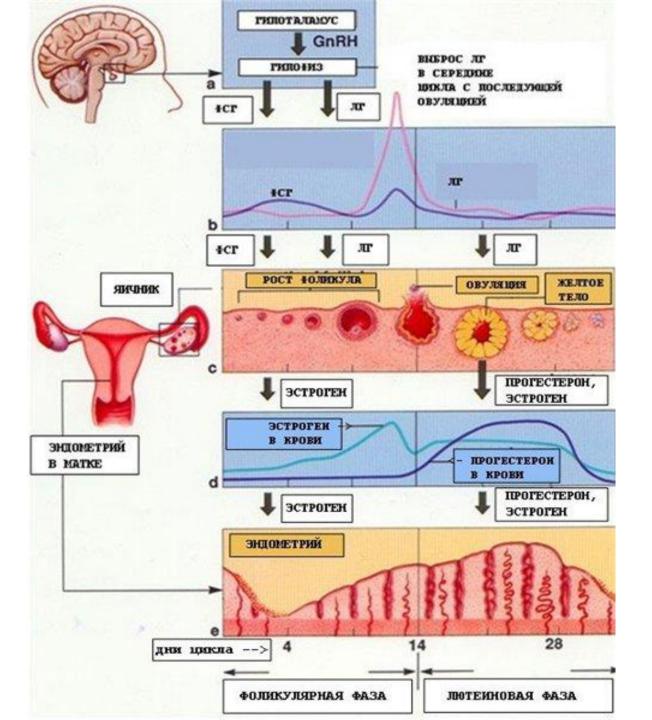
- КЛЕТКИ ЛЕЙДИГА
- ИНГИБИН
- Обратная связь с гипофизом, тормозящая секрецию фоллитропина
- ЭСТРОГЕНЫ

Гормоны яичника и их функции

ЖЕНСКИЕ ПОЛОВЫЕ ГОРМОНЫ

ЭСТРОГЕНЫ

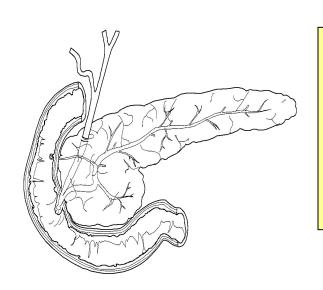
- Половая дифференцировка в эмбриогенезе, половое созревание, развитие женских половых признаков, установление менструального цикла
- Рост мышцы и эпителия матки, стимуляция пролиферативной фазы цикла
- Регуляция полового поведения
- Увеличение сократимости матки и в чувствительности ее к окситоцину
- Развитие молочных желез
- Слабый анаболический эффект
- Повышение активности остеобластов


ПРОГЕСТЕРОН

- Сохранение беременности Ослабление готовности матки к сокращению
- Активация секреторных структур эндометрия

Активация роста молочных желез Подавление секреции

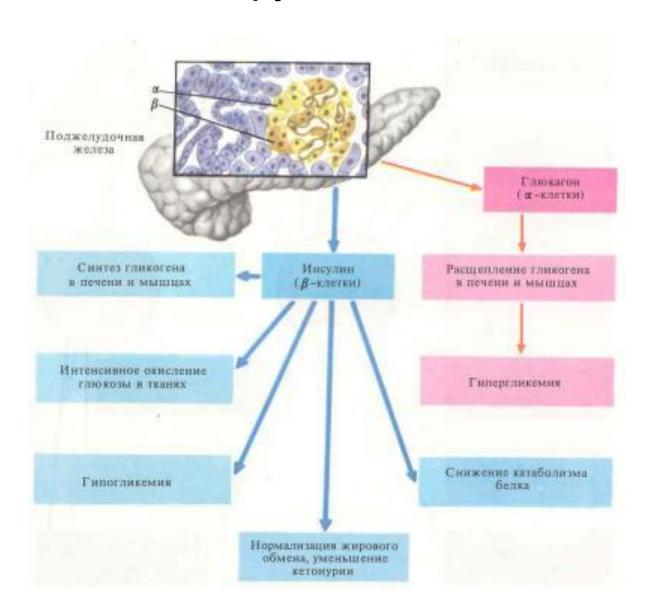
гонадотропинов гипофизом


Антиальдостероновый эффект натриурез

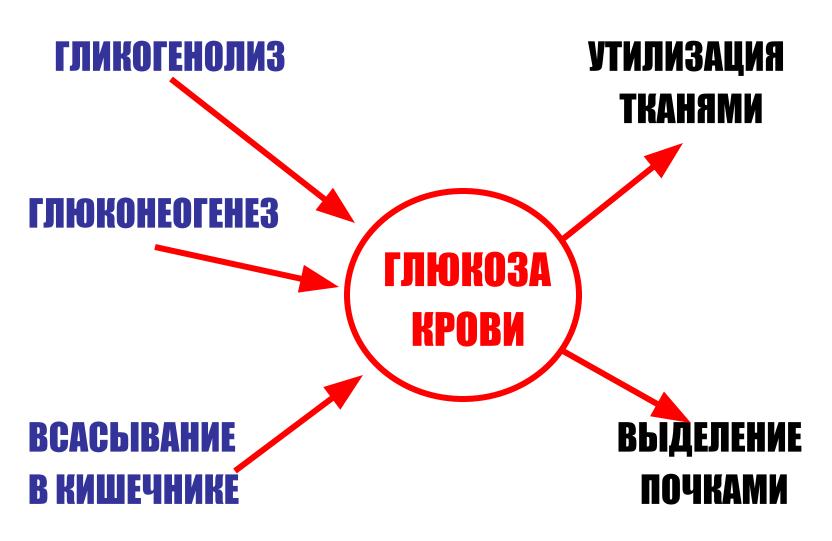
- •Беременность-сложный физиологический процесс, характеризующийся изменением гормонального статуса женщины
- •Постоянное взаимодействие плода,плаценты и организма матери в процессе синтеза большого количества половых стероидов эстрогенов и прогестерона
- •Плацента-гормонообразующий орган, секретируемый стероиды и пептиды

Клеточный состав островков Лангерганса поджелудочной железы

25% альфа - клетки: ГЛЮКАГОН


60% бета-клетки: ИНСУЛИН

10% дельта-клетки: соматостатин


5% РР-клетки: панкреатический

полипептид

Гормоны поджелудочной железы и их функции

ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ УРОВЕНЬ ГЛИКЕМИИ

ОСНОВНЫЕ ГИПЕРГЛИКЕМИЧЕСКИЕ ЭФФЕКТЫ ГОРМОНОВ

ГЛЮКАГОН

Увеличение гликогенолиза Увеличение глюконеогенеза

КАТЕХОЛАМИНЫ

Увеличение гликогенолиза Подавление секреции инсулина

ГЛЮКОКОРТИКОИДЫ

Увеличение глюконеогенеза

СОМАТОТРОПИН

Уменьшение потребления глюкозы тканями из-за снижения их чувствительности к инсулину

ГИПОГЛИКЕМИЧЕСКИЙ ЭФФЕКТ ГОРМОНОВ

ИНСУЛИН

Увеличение поглощения глюкозы мышечной, жировой ткани и печени Уменьшение освобождения глюкозы из печени Уменьшение глюконеогенеза

СОМАТОСТАТИН

Подавление освобождения глюкагона
Подавление всасывания глюковы
киптечнике
В

КОНТРОЛЬ СЕКРЕЦИИ ИНСУЛИНА

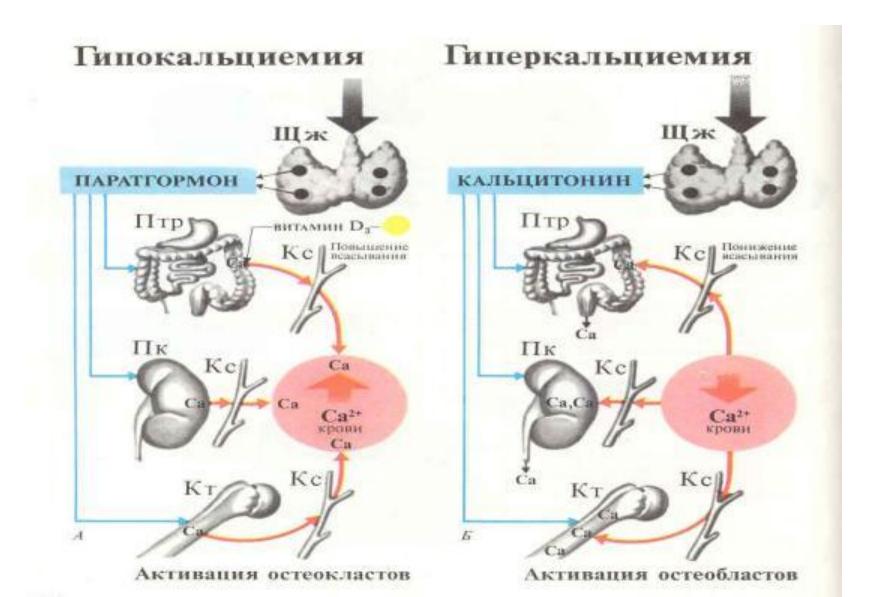
СТИМЛИРУЮТ	подавляют	
ГЛЮКОЗА	СОМАТОСТАТИН	
АЦЕТИЛХОЛИН	НОРАДРЕНАЛИН	
В-адреномиметики	Ингибиторы метаболизма глюкозы	
ГЛЮКАГОН		
Гастрин, Секретин, ХЦК		
Аминок-ть, жирные к-ты		

ОСНОВНЫЕ ЭФФЕКТЫ ИНСУЛИНА

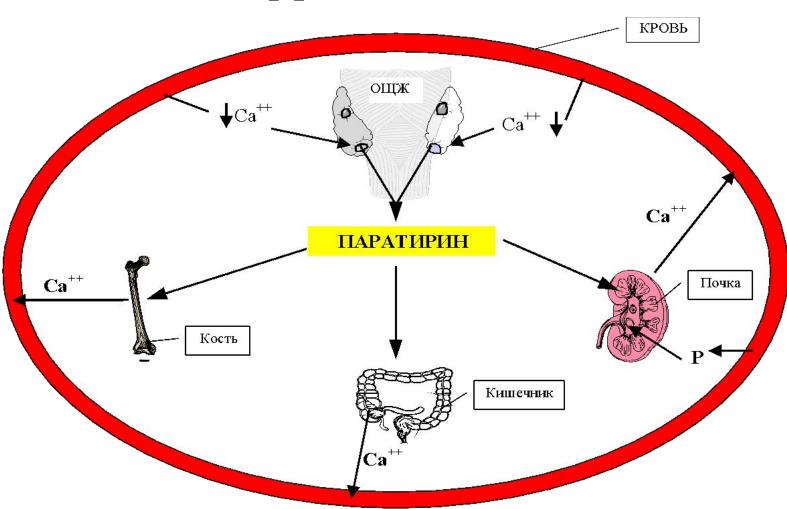
СУБСТРАТЬІ	ПЕЧЕНЬ	АДИПОЦИТЫ	МРШФІ
УГЛЕВОДЬІ	ГЛЮКОКИНАЗА ГЛИКОГЕН- СИНТЕТАЗА ФОСФОРИЛАЗА ГЛЮКОНЕОГЕНЕЗ	ЗАХВАТ ГЛЮКОЗЫ СИНТЕЗ ГЛИЦЕРОЛА	ЗАХВАТ ГЛЮКОЗЫ ГЛИКОЛИЗ СИНТЕЗ ГЛИКОГЕНА
жиры	А ЛИПОГЕНЕЗ АНТИКЕТОГЕНЕЗ	ТРИГЛИЦЕРИДЫ СИНТЕЗЖИРН Б ЛИПОЛИЗК-Т	
БЕЛКИ	↓ ПРОТЕОЛИЗ	-	ЗАХВАТ АМИНОНИСЛОТ ПРОТЕОСИНТЕЗ

ОСНОВНЫЕ ЭФФЕКТЫ ИНСУЛИНА

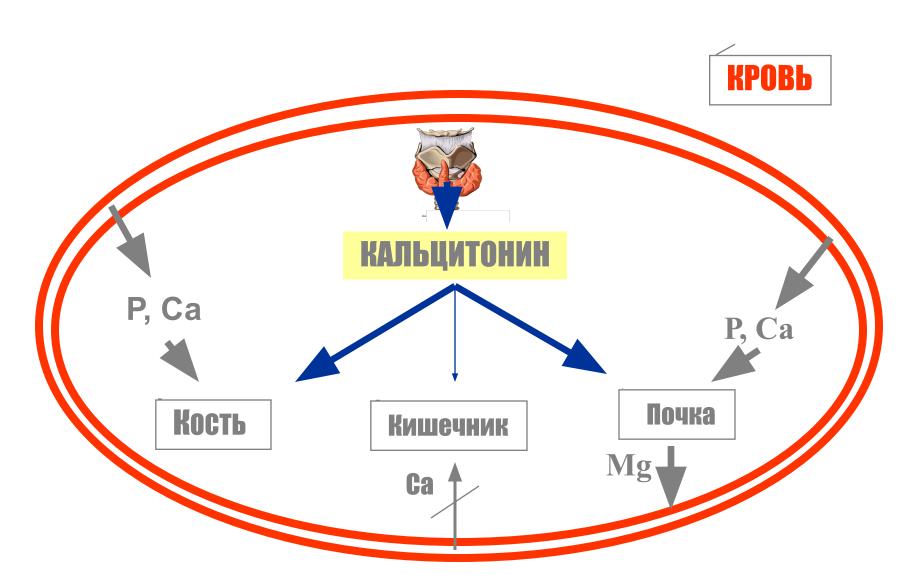
СУБСТРАТЬІ	ПЕЧЕНЬ	АДИПОЦИТЫ	МРШФІ
УГЛЕВОДЬІ	ГЛЮКОКИНАЗА ГЛИКОГЕН- СИНТЕТАЗА ФОСФОРИЛАЗА ГЛЮКОНЕОГЕНЕЗ	ЗАХВАТ ГЛЮКОЗЫ СИНТЕЗ ГЛИЦЕРОЛА	ЗАХВАТ ГЛЮКОЗЫ ГЛИКОЛИЗ СИНТЕЗ ГЛИКОГЕНА
жиры	А ЛИПОГЕНЕЗ АНТИКЕТОГЕНЕЗ	ТРИГЛИЦЕРИДЫ СИНТЕЗЖИРН Б ЛИПОЛИЗК-Т	
БЕЛКИ	↓ ПРОТЕОЛИЗ	-	ЗАХВАТ АМИНОНИСЛОТ ПРОТЕОСИНТЕЗ

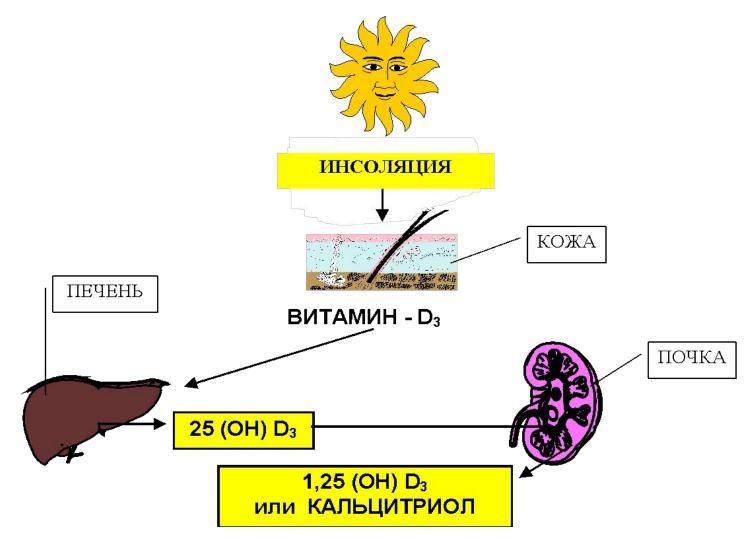

Кальцийрегулирующие гормоны

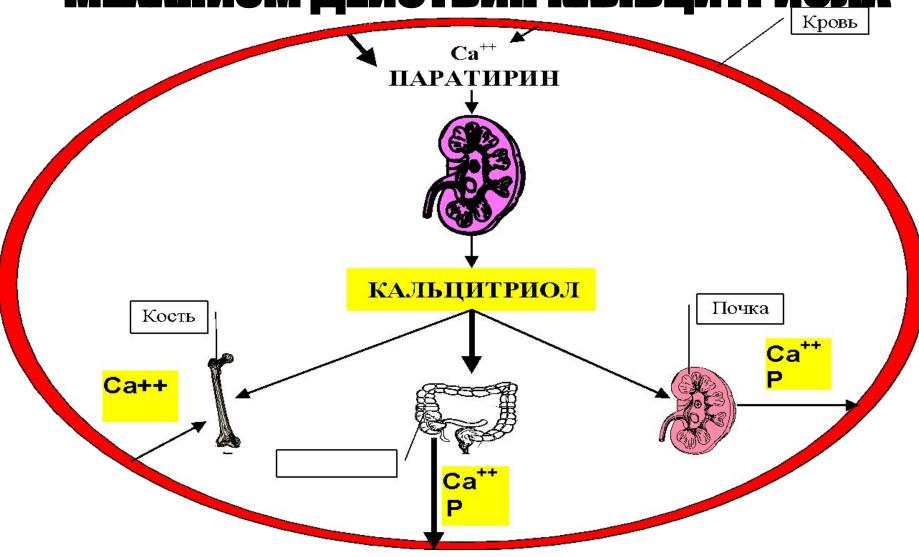
■ ПАРАТИРИН - *Околощитовидные железы*

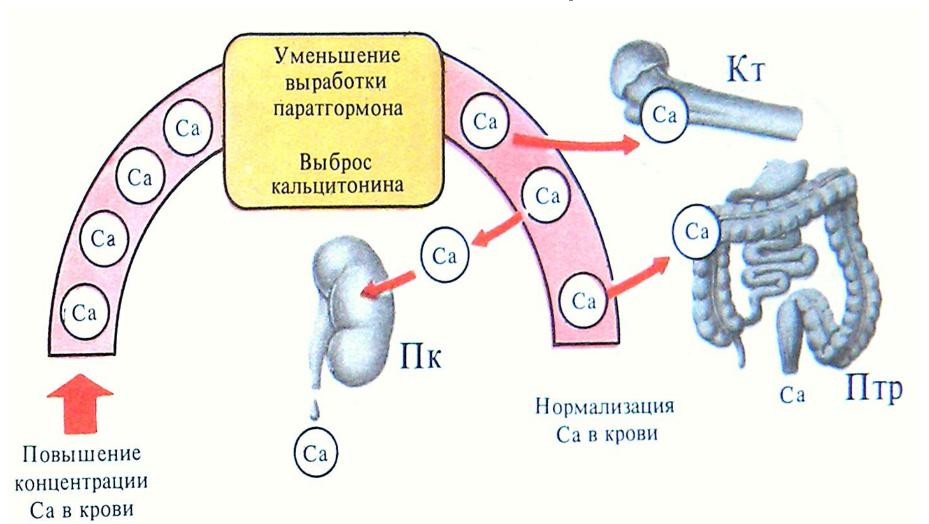

■ КАЛЬЦИТОНИН - *К-клетки щитовидной железы*

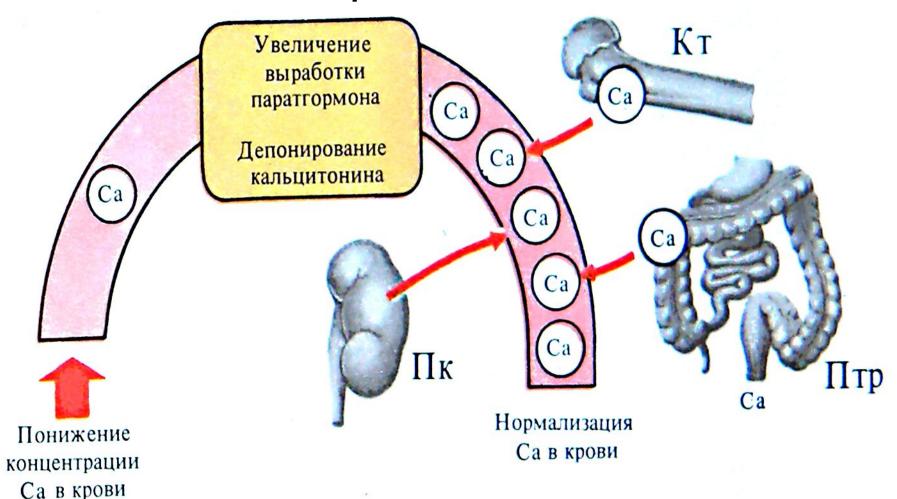
■ КАЛЬЦИТРИОЛ - Почка

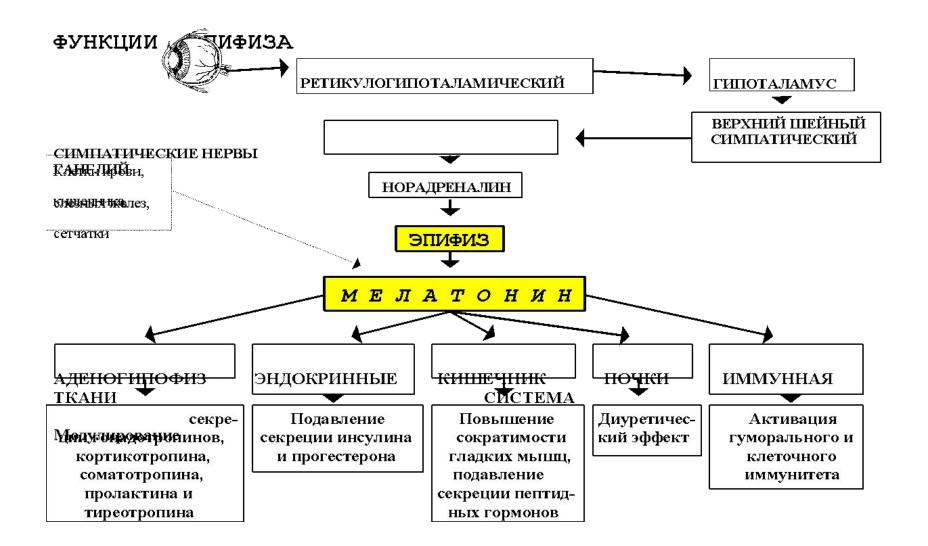

Роль паращитовидных желез в обмене кальция


МЕХАНИЗМ ДЕЙСТВИЯ ПАРАТИРИНА


ОСНОВНЫЕ ЭФФЕКТЫ КАЛЬЦИТОНИНА


ОБРАЗОВАНИЕ КАЛЬЦИТРИОЛА


МЕХАНИЗМ ДЕЙСТВИЯ КАЛЬЦИТРИОЛА


Взаимодействие гормонов, регулирующих баланс кальция в организме

Взаимодействие гормонов, регулирующих баланс кальция в организме

ЭПИФИЗ

