Воронежская государственная медицинская академия им. Н.Н. Бурденко Кафедра эпидемиологии

Лекция

БИОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ, БИОТЕРРОРИЗМ КАК НАМЕРЕННОЕ ИСПОЛЬЗОВАНИЕ ПАТОГЕНОВ

Схема действия 3-х биологических агентов в глобальной системе биологической безопасности

Риск биологической безопасности (заражения) 1 В В В В	Состоит из 2-х аспектов наличия возбудителя в биотическом и абиотическом материале	1. Естественный (непреднамеренный): а) природный б) случайный (антропотехногенный) профессионально-производственной деятельности 2. Искусственный (намеренный): а) биологические агенты в составе: -биологического оружия для использования в военных целях; б) биологические агенты, применяемые с террористической целью
	1 аспект восприимчи- вости к возбудителям	3. Фактор снижения естественной резистентности организма (подавление естественного иммунитета хозяина): а) вирусы (адено, герпес, прокс, ВИЧ, гепатит С); б) бактерии (туберкулез, хламидии, гонококкии и др.); в) гельминты (криптоспоридии, лямблии и др. кишечные и тканевые паразиты)

По утверждению академика В.И. Покровского:

<u>Кроме опасности биотерроризма к основным источникам биологической опасности для современной России относятся:</u>

- природные и генетически модифицированные возбудители инфекционных заболеваний, в первую очередь, природно-очаговых, «возникающих» и «вновь возникающих»;
- неконтролируемый трансграничный перенос и интродукция чужеродных видов, включая генномодифицированные организмы и корма, полученные на их основе;
- неконтролируемая генно-инженерная деятельность и генотерапия;
- Техногенная и лабораторная деятельность.

Необходимость повышения уровня биологической безопасности обусловлена:

- наличием естественных резервуаров патогенных микроорганизмов в природных очагах, крупных государственных и учрежденческих коллекций возбудителей;
- возрастанием угрозы завоза и распространения возбудителей в связи с развитием современных скоростных видов транспорта и увеличением всех видов миграции и международной торговли животными, растениями и биологически опасными материалами;
- появлением новых малоизученных инфекций;
- получением и применением в различных сферах деятельности микроорганизмов с искусственно измененным геномом, что может приводить к появлению неизвестных свойств у таких биологических агентов;
- возможностью преднамеренного использования патогенов, находящихся в лабораториях, для деструктивных целей.

Величина инфицирующей дозы, обеспечивающая заражение 25—50% добровольцев

Нозология или возбудитель	Путь заражения	Доза — число микроорганизмов или вирусных частиц
Аденовирус 24 Аденовирус 7 Венесуэльский энцефаломиелит Вирус SV40 Грипп А2 Коксаки А21 Корь Краснуха -////- Лихорадка Западного Нила	Вирусы На конъюнктиву Закапывание в нос Подкожно Назофарингеальный -//- Ингаляционный Интраназальный распыл Фарингеальный распыл Подкожно Закапывание в нос Внутримышечно	>32 >150 1 10 000 >790 >18 0,2 >10 30 60
Парагрипп I типа Полиовирус I типа Риновирус РС вирус	Закапывание в нос Пероральный Закапывание в нос Интраназальный распыл	>1,5 2 >1 >160-640

ПРОДОЛЖЕНИЕ

Величина инфицирующей дозы, обеспечивающая заражение 25—50% добровольцев

Нозология или возбудитель	Путь заражения	Доза — число микроорганизмов или вирусных частиц
Лихорадка Ку	Риккетсии	
Лихорадка цуцугамуши	Ингаляционный	10
	Внутрикожный	3
	Бактерии	
Escherichia colt	Пероральный	100 000 000
Shigetla flexneri	-//-	180
Брюшной тиф	-//-	100 000
Сибирская язва	Ингаляционный	>1300
Сифилис	Внутрикожный	57
Туляремия	Ингаляционный	10
Шигеллезы	Пероральный	1 000 000 000
Холера	-//-	100 000 000
Малярия	Простейшие внутривенный	10

Классификация патогенов по степени опасности работы лабораторий

- 1. Патогены I группы (IV класс опасности по международной классификации) представляют большую опасность, способны вызвать эпидемические осложнения. Работа с такими патогенами исключительно в специальных условиях лаборатории.
- 2. Патогены II группы (III класс по международной классификации) представляют опасность для лабораторных работников, но не вызывают эпидемических осложнений). Работа с защитными лабораторным оборудованием и зонированием лабораторных помещений.
- 3. **Патогены III группы** (II по международной классификации). Возбудители обычных инфекционных болезней. Работа по стандартным методикам с зонированием лабораторных помещений.
- 4. Патогены IV группы (I класс международной классификации). Представляют минимальную опасность или непатогенные микроорганизмы. Работа с защитным лабораторным оборудованием и зонированием лабораторных помещений.

Наиболее пригодными для целей <u>бактериологической войны</u> являются возбудители особо опасных инфекционных болезней. Подобный <u>перечень</u>, по мнению экспертов США, содержит следующие патогены, разделенные на <u>три категории</u> по мере снижения вероятности использования тех или иных микроорганизмов в качестве бактериологического (биологического) оружия:

• Категория А

- Сибирская язва {Bacillus anthracis}
- Ботулизм (Clostridium botuliinum toxin)
- Чума (Yesinia pestis)
- Оспа {Variola major)
- Туляремия (Francisella tularensis)
- Вирусные геморрагические лихорадки (филовирусы [Ebola, Marburg], аренавирусы [Lassa, Machupo])

• Категория Б

• Бруцеллез (Brucella spp.) и многие другие возбудители опасных инфекций и инвазий, включая холерный вибрион и криптоспоридии.

• Категория В

- « Новые инфекционные болезни, такие как «Нипах» и «Хантавирусы»
- Вирус гриппа, подобный H5N1.

УТВЕРЖДАЮ
Первый заместитель
Министра здравоохранения
Российской Федерации,
Главный государственный
санитарный врач
Российской Федерации
Г.Г.ОНИЩЕНКО
6 ноября 2001 г.

ОРГАНИЗАЦИЯ И ПРОВЕДЕНИЕ ПРОТИВОЭПИДЕМИЧЕСКИХ МЕРОПРИЯТИЙ ПРИ ТЕРРОРИСТИЧЕСКИХ АКТАХ С ПРИМЕНЕНИЕМ БИОЛОГИЧЕСКИХ АГЕНТОВ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

N 2510/11646-01-34

В методических рекомендациях представлена рациональная система эффективных противоэпидемических мероприятий, адекватных возникшей чрезвычайной ситуации в результате диверсионного применения биологических агентов или взрывов на объектах биотехнологической промышленности, позволяющая уменьшить число инфекционных больных в создавшихся эпидемических очагах, локализовать и ликвидировать эти очаги.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

N 2510/11646-01-34

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Понятие о биологическом террористическом акте

Биологический террористический акт можно определить как применение биологических агентов (патогенов) непосредственно для преднамеренного скрытого заражения среды обитания человека (воздуха замкнутых пространств, местности с находящимися на ней объектами, растительностью, сельскохозяйственными культурами, воды, открытых водоемов и водоводной сети, продовольствия, животных) или же путем совершения взрывов, созданием условий для аварий иным методом на объектах биотехнологической промышленности, в микробиологических лабораториях, работающих с патогенными для человека и животных микроорганизмами с элиминацией последних во внешнюю среду за пределы этих объектов (лабораторий).

Биологические рецептуры

- Биологические рецептуры могут быть жидкими и порошкообразными.
- Порошкообразная рецептура более стойкая при хранении, а жидкая достаточно хорошо сохраняет свои свойства при применении во время теракта.
- Количество жизнеспособных микроорганизмов в весовой или объемной единице рецептуры может варьировать в широких пределах, усредненное значение которых составляет 10¹⁰ 10¹² живых микробных клеток (ж.м.к.) в 1 г (мл) рецептуры.
- Сухие (порошкообразные) рецептуры получают из жидких методом сублимационной сушки.

КЛАССИФИКАЦИЯ БИОЛОГИЧЕСКИХ АГЕНТОВ, НАИБОЛЕЕ ВЕРОЯТНЫХ В КАЧЕСТВЕ СРЕДСТВ ТЕРРОРИСТИЧЕСКИХ АКТОВ

Критерии оценки	Группы биологических агентов	Виды микроорганизмов (биологических агентов)
Избира- тельность поражения	Для поражения людей	Возбудители вирусной природы: натуральная оспа, геморрагические лихорадки Ласса, Марбурга, Эбола, ГЛПС, боливийская геморрагическая лихорадка, Венесуэльский энцефаломиелит лошадей (ВЭЛ), восточный энцефаломиелит лошадей, желтая лихорадка, лихорадка Денге, японский энцефалит; Возбудители бактериальной природы: чума, сибирская язва, туляремия, сап, мелиоидоз,бруцеллез, легионеллез; Возбудители риккетсиозной природы: эпидемический сыпной тиф, пятнистая лихорадка скалистых гор, КУлихорадка; Токсины растительного и животного происхождения: ботулотоксин, клостридиальные токсины, сибиреязвенный токсин, стафилококковый энтеротоксин В

КЛАССИФИКАЦИЯ БИОЛОГИЧЕСКИХ АГЕНТОВ, НАИБОЛЕЕ ВЕРОЯТНЫХ В КАЧЕСТВЕ СРЕДСТВ ТЕРРОРИСТИЧЕСКИХ АКТОВ

Критерии	Группы	Виды микроорганизмов
оценки	биологических агентов	(биологических агентов)
Избира- тельность поражения	Для поражения сельско- хозяйственных животных	Чума крупного рогатого скота, чума свиней, чума птиц, африканская лихорадка свиней, оспа овец, сибирская язва, сап, лихорадка долины Рифт и др.
	Для поражения посевов сельско- хозяйственных культур	Возбудители ржавчины хлебных злаков, фитофтороза картофеля, пирикуляриоза риса, гоммоза сахарного тростника, хлопчатника; Насекомые - вредители растений: колорадский жук, Саранча
	Для повреждения защитных объектов, средств коммуникаций, техники	Плесневые грибы Aspergillus и бактерии рода Мисовасterium для повреждения электро-, радиоизоляции, радиоэлектронного оборудования, Рода Cladosporium, Penicillium, Mucor, Pseudomonas - для повреждения горюче - смазочных материалов; Железо-, серобактерии для ускорения коррозии металлов и сплавов

КЛАССИФИКАЦИЯ БИОЛОГИЧЕСКИХ АГЕНТОВ, НАИБОЛЕЕ ВЕРОЯТНЫХ В КАЧЕСТВЕ СРЕДСТВ ТЕРРОРИСТИЧЕСКИХ АКТОВ

Критерии оценки	Группы биологических агентов	Виды микроорганизмов (биологических агентов)
Инкубационный период	Быстродействующие {максимум поражения в первые сутки)	Ботулинический токсин
	Замедленного действия (появление поражения от 2 до 5 суток)	Чума, сибирская язва, туляремия, ВЭЛ, желтая лихорадка, сап, мелиоидоз и др.
	Отсроченного действия (появление поражения спустя 5 суток)	Бруцеллез, сыпной тиф, натуральная оспа, Ку-лихорадка

- По мнению ряда экспертов, существует альтернативный способ биотеррористической атаки, когда не используется какой-либо высокопатогенный биологический агент. В этом случае применяется патоген или токсин, обладающий выраженным иммуносупрессивпым свойством.
- Целью такой биотеррористической атаки становится снижение уровня естественной защиты у людей, подвергшихся воздействию. В результате подавления естественного врожденного или специфического иммунитета среди пораженного населения возникнут массовые инфекционные заболевания разной этиологии, вызванные не только патогенными, но и условно-патогенными возбудителями. При реализации подобного сценария будет очень сложно связать возникшие эпидемические последствия с намеренным применением биологических агентов.

Схема механизма иммуносупресии (не традиционной биологической опасности)

• Мы рассуждаем о национальных приоритетах здравоохранения, провозглашенных президентом России, не вспоминая о биобезопасности. Издержки такого подхода могут сломать всю президентскую программу.

В.И. Покровский, академик РАМН

• Мы находимся в состоянии биологической войны, но не между группами людей, а между людьми и микробами.

М.И. Перельман, академик РАМН