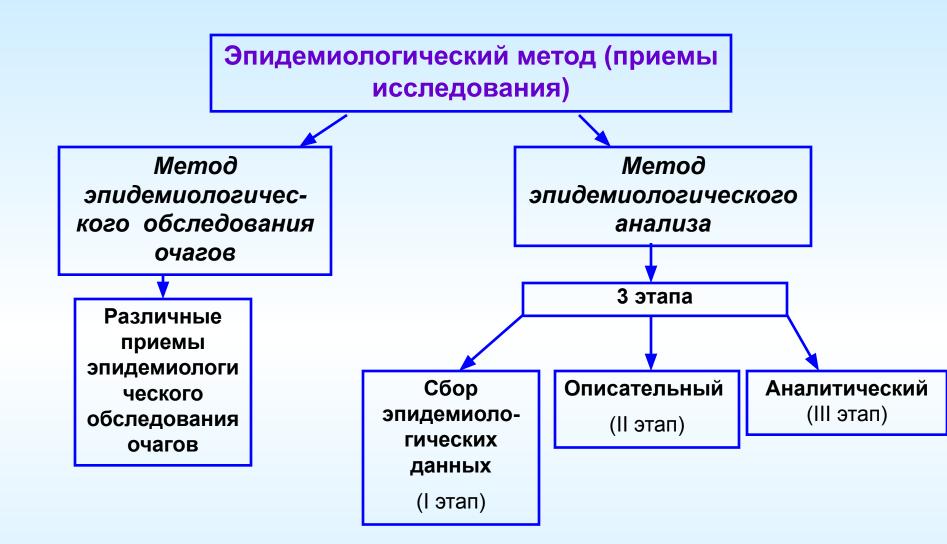
Воронежская государственная медицинская академия им. Н.Н. Бурденко Кафедра эпидемиологии

Лекция

Методы эпидемиологии


Лечебный факультет

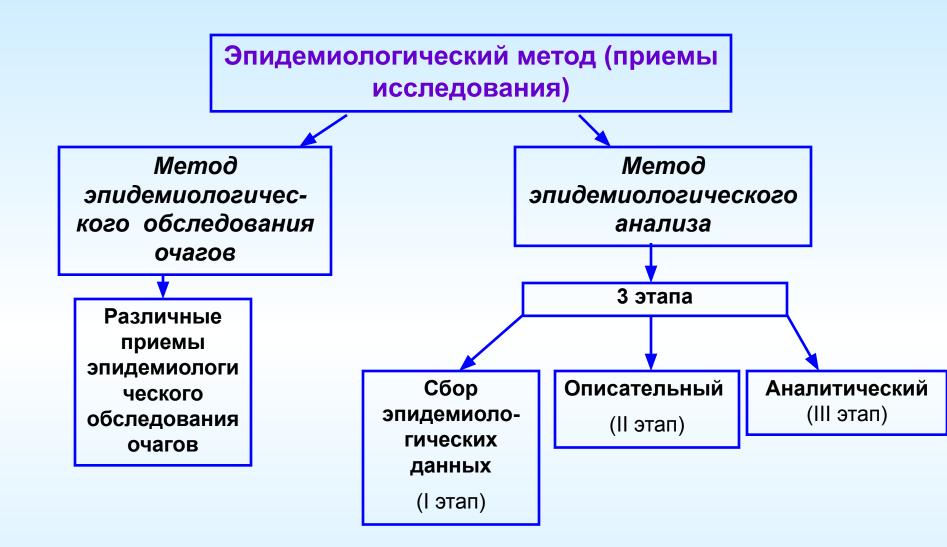
Цель современной **эпидемиологии** инфекционных болезней - изучение механизма становления и развития эпидемического процесса, разработка и применение способов предупреждения и борьбы с этими болезнями.

• Эпидемиологический метод — своеобразная совокупность различных методических приемов и способов, в том числе современных компьютерных технологий при проведении текущего и ретроспективного анализа заболеваемости, а также математическое моделирование, позволяющих специалистамэпидемиологам изучать все многообразие проявлений эпидемического процесса.

2

- Эпидемический очаг место пребывания источника инфекции с окружающей его территорией в тех пределах, в которых возбудитель способен передаваться от источника инфекции к людям, находящимся в общении сними.
- Метод эпидемиологического обследования очагов — специфическая совокупность приемов, которая предназначена для изучения причин возникновения и распространения инфекционных заболеваний в этом очаге. Это означает, что целью эпидемиологического обследования очага является выявление источника возбудителя инфекции, путей и факторов его передачи и контактных, подвергшихся риску заражения.

Приемы эпидемиологического обследования очага


Цель (диагностика эпидемического процесса)	Выявление источника инфекции	Выявление путей и факторов передачи	Выявление контактных, подвергшихся риску заражения
Приемы эпидемиологического обследования	Опрос больного Изучение документации Лабораторное обследование больного и лиц, соприкасавшихся с ним в пределах периода заражения Эпидемиологическое наблюдение	Санитарное обследование очага Изучение документации Лабораторные исследования	Опрос контактных лиц Лабораторные исследования

Метод эпидемиологического обследования очагов сохраняет свое значение при целом ряде различных ситуаций:

- появление хотя бы одного случая экзотической инфекции;
- появление множества спорадических случаев, казалось бы, не связанных между собой, но которые поднимают уровень заболеваемости выше сложившегося ординара, соответствующего данному периоду;
- множественный очаг;
- необычные (нештатные) ситуации;
- в условиях достаточно изолированного стабильного коллектива, в котором действия каждого члена могут быть более или менее надежно прослежены.

Эпидемиологическое обследование очагов малоэффективно (или может быть неэффективным) при следующих обстоятельствах

- единичный случай заболевания (за исключением экзотических инфекций);
- наличие при данной нозоформе носительства, особенно если оно доминирует по частоте по отношению к манифестным формам инфекции;
- вероятность общения в различных местах (транспорт, магазины и т. д.);
- вероятность заражения на значительном расстоянии от местонахождения источника инфекции (например, контаминация продукта на пищевом предприятии заражение в домашних условиях).

Сбор эпидемиологических данных І этап

- **Исходы** (заболеваемость) как результат благоприятного и неблагоприятного воздействия на популяцию
- Воздействие факторов:
 - А) окружающей среды
 - Б) социально-бытовых
 - В) природных
 - Г) медицинского обеспечения

Данные о составе и численности изучаемых популяций (демография)

Описательный метод эпидемиологического анализа I I этап

- 1. Прием наблюдения
- 2. Клинические приемы
 - 3. Приемы лабораторных и инструментальных исследований
 - 4. Прием распределения заболеваемости по времени
 - 5. Прием распределения заболеваемости по различным группам
 - 6. Приемы формальной логики (для формирования гипотез)

Задачи описательных условий

- Интенсивность
- 2. Динамика
- 3. Пространственная характеристика
- 4. Описание структуры заболеваемости и выявление групп риска
- Формирование гипотез о возможных факторах риска

Аналитический III этап

- 1. Приемы формальной логики
- Приемы оценки статистики (оценка коэффициента корреляции, коэффициентов регрессии, отношения преобладаний и др.)
 - 3. Когортные исследования
 - 4. Исследования случай контроль

С целью возможности сравнения показателей заболеваемости по отдельным территориям, численность проживающего населения на которых различна, используют приведенный показатель заболеваемости (обычно в случаях заболеваний на 1000, 10000 или 100000 населения), рассчитываемый по формуле

$$P = \frac{A}{n} * 100000$$

где Р - приведенный показатель заболеваемости в случаях на 100000 населения;

А – абсолютное число зарегистрированных случаев заболеваний на анализируемой территории за оцениваемый период времени;

n - численность населения, постоянно проживающего на анализируемой территории (численность популяции к началу или к концу наблюдения, или полусумма этих значений).

Этот показатель еще носит название кумулятивной инцидентности.

Этот показатель еще носит название кумулятивной инцидентности.

$KИ=n/N*10^{m}$

n – количество случаев заболеваний;

N – численность популяции риска;

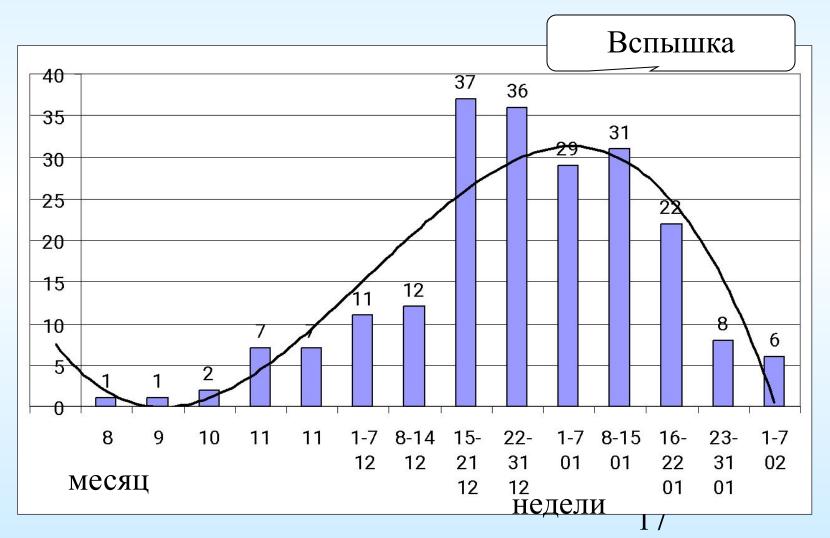
- $10^{\rm m}$ множитель, служащий для того, чтобы получающийся показатель не имел слишком много нулей после запятой.
- В случае, когда вероятность заболевания связывается со сроками пребывания в месте риска заражения или если речь идет о зависимости от продолжительности действия факторов риска используется показатель *плотности инцидентности*.
- Плотность инцидентности (темп инцидентности, «сила заболеваемости») измеряет частоту возникновения новых случаев заболевания (п), возникших за определенный период времени (период наблюдения), с учетом суммарного времени воздействия факторов риска, добавленного всеми членами популяции риска

$$\Pi N = n/(p*T)*10^{m}$$

- n количество случаев заболеваний;
- р численность популяции риска;
- Т-время риска (время, в течение которого каждый член популяции находился под действием фактора, способного вызвать данное заболевание.
- $10^{\rm m}$ множитель, служащий для того, чтобы получающийся показатель не имел слишком много нулей после запятой.
- Чаще всего $10^{\rm m}=10^3=1000$: показатель рассчитывается на 1000 «человеко-дней», на 1000 дней госпитализации, на 1000 катетеро-дней, на 1000 дней искусственной вентиляции и т. п.

Динамика — это распределение абсолютных чисел или частотных показателей (интенсивности) во времени.

1. Однонаправленные изменения (пример)

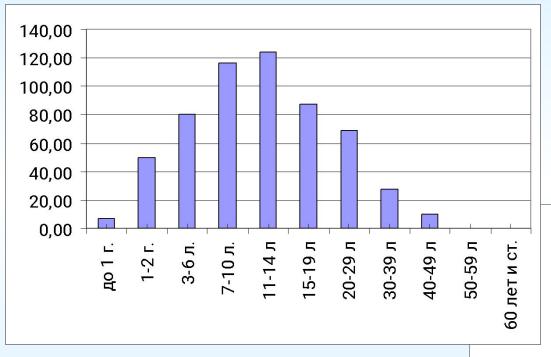

2. Периодические подъемы (пример)

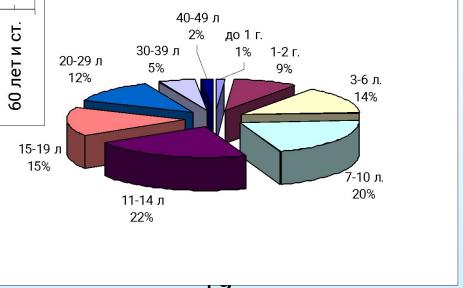
Минимальный, максимальный и средний уровни заболеваемости населения вирусным гепатитом A (по данным многолетних наблюдений 1998-2005 гг.)

3. Случайные колебания (вспышки)

Заболеваемость геморрагической лихорадкой с почечным синдромом в Воронежской области с 30.08.06 по 07.02.07 (число случаев)

<u>Пространственная</u> <u>характеристика</u> —


это распределение частотных показателей (интенсивности) по территории.



Структура — это распределение частотных показателей (интенсивности) среди различных групп населения.

Показатели интенсивности заболеваемости ВГВ по возрастным группам (на 100 тыс. населения соответствующего возраста)

Структура числа случаев заболеваемости ВГВ по возрастным группам

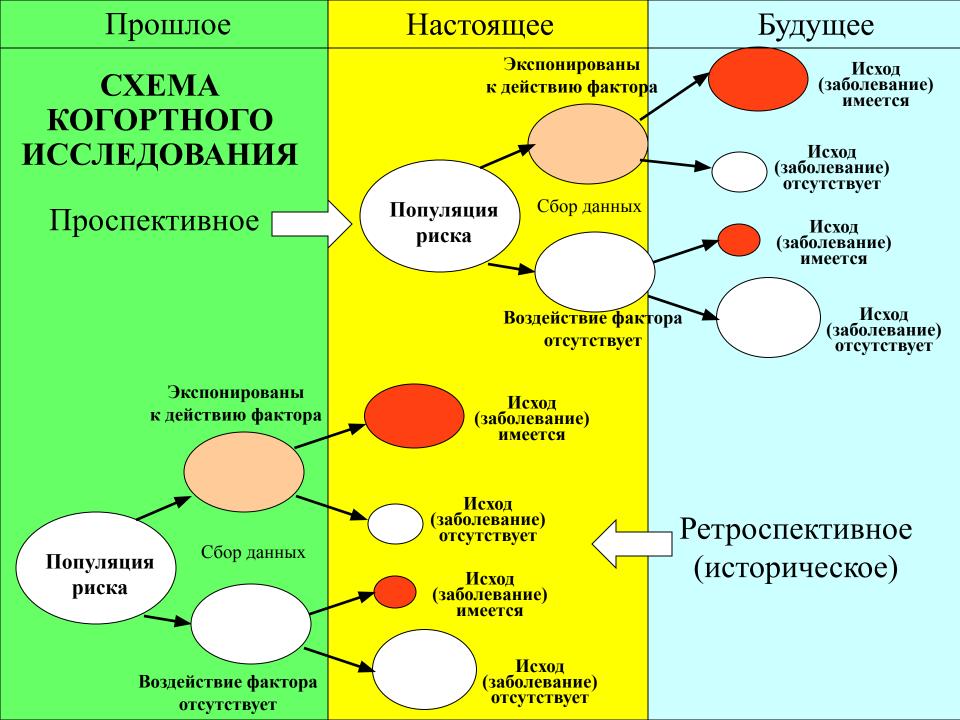
Приемы формальной логики

- Прием различия
- Прием сходства
- Прием сопутствующих изменений
- Прием аналогии
- Прием остатков

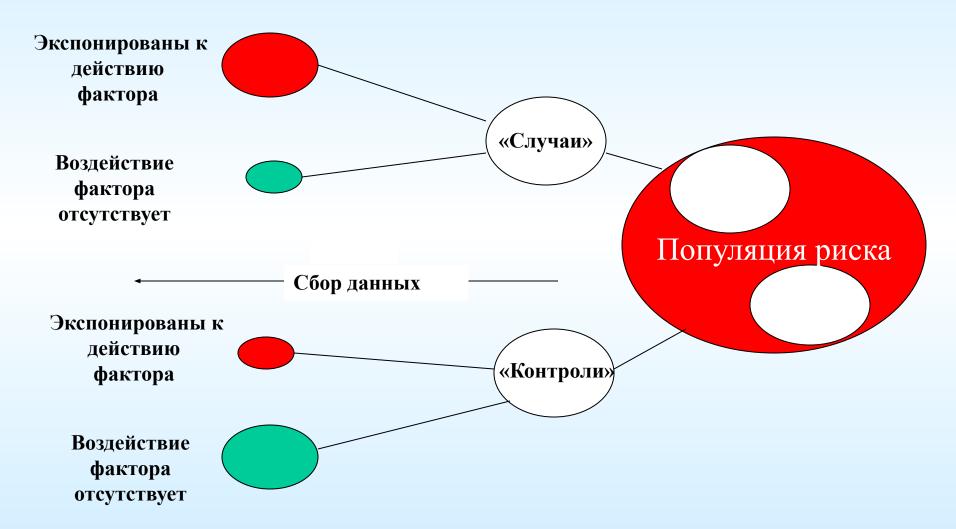
Прием различия

Обстоятельства В (вероятность действия возможного причинного фактора отсутствует или она не велика)

Инцидентность значительна или очевидна и вызывает опасения (+)


Инцидентность отсутствует или крайне невелика (-)

Прием сходства


Обстоятельства (ситуация) А	Обстоятельства (ситуация В),
	которые существенно
	отличаются от обстоятельства
	(ситуации) А
	(по каким-либо природным,
	социальным, демографическим
	и др. признакам или их
	совокупности)
Инцидентность значительна	Инцидентность значительна
или очевидна и вызывает	или очевидна и вызывает
опасения (+)	опасения (+)
Наличие некоего фактора X	Наличие некоего фактора Х
	22

Другие логические приемы

- Прием сопутствующих изменений обычно используется при оценке событий в динамике (выявление изменений во времени, пространстве и т.д.)
- Прием аналогий это экстраполирование материалов хорошо изученных заболеваний, на наблюдения, относящиеся к малоизученным формам
- Прием остатков: из суммы факторов, предположения о которых обоснованы другими логическими приемами формирования гипотез, последовательно исключаются отдельные из них

Схема исследования «случай-контроль»

Основные приемы статистики для анализа когортных исследований и исследований «случай-контроль»

	Исход имеется (больные)	Исход отсутствует (здоровые)	Bcero
Экспонированная группа	a	b	e = a + b
Контрольная группа	С	d	f = c + d
Bcero	g = a + c	h = b + d	n = a+b+c+d

Отношение шансов (OR): OR = (a/b)/(c/d) = ad/bc

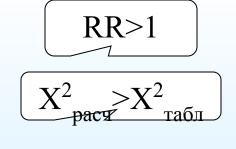
 X^2 (хи-квадрат): $X^2 = n (|ad - bc| - n/2)^2 / efgh$

Относительный риск (RR): RR = (a/e)/(c/f) = af/ce.

Этиологическая доля (EF): EF = (RR-1)/RR или EF = [(RR-1)/RR]*100%.

Количественная оценка эффекта воздействия

- <u>Отношение шансов</u> (OR) мера связи отношения шансов развития болезни и ее отсутствия в экспонированной группе (подвергающейся воздействию изучаемых факторов) и группе сравнения (контрольной), т.е. соотношение шансов болезни и ее отсутствия
- Относительный риск (RR)- наилучшая мера силы связи между фактором риска и болезнью: RR>1 чем больше, тем более вероятно, что эта связь является причинной; RR=1 фактор не оказывает воздействия; RR<1 означает превентивное действие изучаемого фактора.
- Соотношения OR и RR:
- - для редких болезней они приблизительно равны (OR=RR);
- - для общих болезней относительный риск меньше отношения шансов (0 < |RR| < |OR|).
- Оценка достоверности OR и RR проводится по величине χ^2 (хиквадрат), которую сравнивают с табличным значением. в частности $X^2=3,8$ для вероятности статистической ошибки менее 0,05 (5%).
- <u>Этиологическая доля</u> (EF) показывает пропорциональный привнесенный риск за счет воздействия изучаемого фактора или их совокупности. Чем она больше, тем более вероятно, что эта оцениваемая связь является причинной.


Пример когортного исследования

Профессиональная группа (мойщики технических изделий, смывщики технологических поверхностей, маляры, рабочие, занятые на изготовлении лакокрасочных изделий, клеев и герметиков) ОАО «Воронежского авиационно-строительного объединения».

Основной фактор: химический (воздействие толуола в концентрациях 15- 150 мг/м^3 , при среднесменных показателях 48,4-88,0 мг/м³).

	Болевшие	Здоровые	Всего
Профессиональная группа №1	36	54	90
Группа сравнения (контрольная)	22	68	90
Всего	58	122	180

Показатели	Значение
Отношение шансов (OR)	2,06
Относительный риск (RR)	1,64
Этиологическая доля (ЕF),%	38,89
X^2 (хи-квадрат) расчетное	4,30
X^2 (хи-квадрат)-табличное при p<0,05	3,8

Вывод об эффекте воздействия: Эффект неблагоприятного воздействия химического фактора на число случаев заболеваемости с временной утратой трудоспособности имеет место.