

Гомельский государственный медицинский университет Кафедра нормальной физиологии

Физиология сосудистой системы

Микроциркуляция. Движение крови по венам. Регуляция системы кровообращения Лекция №4

для студентов 2 курса

Старший преподаватель Мельник С.Н.

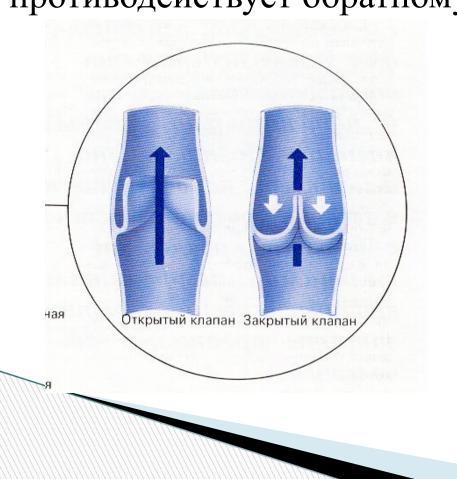
План лекции:

- 1. Движение крови по сосудам низкого давления (вены). Венный пульс.
- 2. Микроциркуляция. Капиллярный кровоток и его особенности.
- 1. 3. Регуляция сосудистого тонуса, как основного механизма поддержания давления крови.

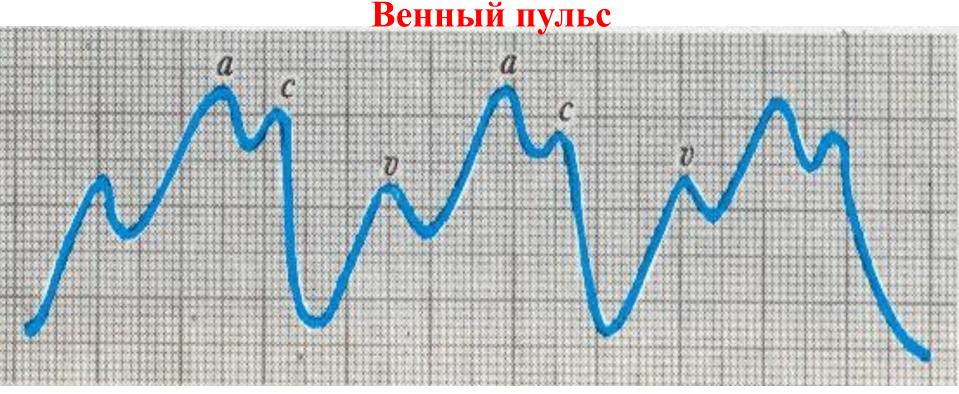
1. Движение крови по сосудам низкого давления (вены). Венный пульс.

Вены являются сосудами емкостными. Вмещают 70 – 80 % крови.

Давление в венулах превышает атмосферное на 12 -18 мм рт. ст.


В венах вне грудной полости — на 5 -9 мм рт.ст. При впадении в правое предсердие оно колнблится в зависит от фаз дыхания:

на вдохе – ниже атмосферного, на выдохе – выше на 2 – 5 мм рт.ст. Центральное венозное давление (ЦВД) давление в крупных венах в месте их впадения в правое предсердие — в среднем составляет около 4,6 мм рт.ст. ЦВД — важная клиническая характеристика, необходимая для оценки насосной функции сердца. При этом решающее значение имеет давление в правом предсердии (около 0 мм рт.ст.) — регуляторе баланса между способностью сердца откачивать кровь из правого предсердия и правого желудочка в лёгкие и возможностью крови поступать из периферических вен в правое предсердие (венозный возврат).


Дополнительные факторы обеспечивающие кровоток в венах:

1. Присасывающее действие грудной клетки. На вдохе снижается давление в грудной полости, это способствует расширению вен, срабатывает эффект засасывания крови из соседних сосудов. Диафрагма, опускаясь вниз, увеличивает внутрибрюшное давление, что способствует венозному притоку к сердцу из сосудов брюшной полости.

2. Сокращения скелетных мышц («мышечный насос»). Скелетные мышцы, сокращаясь, сдавливают вены, что проталкивает кровь к сердцу. Наличие клапанов на внутренней поверхности некоторых вен противодействует обратному кровотоку.

- 3. Присасывающее действие сердца. Предсердно-желудочковая перегородка при систоле желудочка, смещаясь вниз создает присасывающий эффект крови к сердцу из вен.
- 4. Перистальтические сокращения стенок некоторых вен — 2–3 в мин.
- 5. Пульсация рядом расположенных артерий.

- **a** повышение давления при систоле предсердия.
- с —обусловлена повышением давления в полой вене при сокращении желудочков
- v волна обусловлена повышением давления в вене в связи с прекращением оттока крови из вены в конце диастолы предсердий

МЕТОДЫ ИССЛЕДОВАНИЯ ПОКАЗАТЕЛЕЙ ГЕМОДИНАМИКИ

- □ Определение МОК по Фику
- Сфигмография и определение скорости распространения пульсовой волны
- □ Плетизмография
- Реография
- Регистрация артериального давления

2. Микроциркуляция. Капиллярный кровоток и его особенности.

Микроциркуляция - это движение крови по сосудам микроциркуляторного русла, к которым относятся:

- 1)артериолы
- 2)метаартериолы
- 3)прекапиллярный сфинктер
- 4)прекапилляры
- 5)капилляры
- 6)посткапиллярные венулы
- 7)венулы

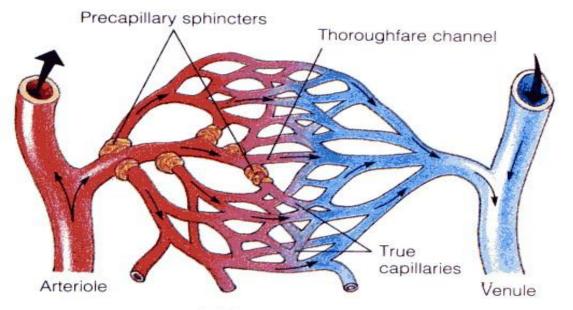
Капилляры, относятся к *обменным* сосудам. Они обеспечивают:

- газообмен,
- снабжение клеток питательными веществами
- выведение продуктов метаболизма.

Обмен происходит также в венулах.

В покое кровь циркулирует лишь в 25–35% всех капилляров.

Плотность капилляров наибольшая в миокарде, мозге, печени, почках, легких - до 2500—3000 капилляров на 1 мм 2 .


Наименьшая - в костной, жировой, соединительной ткани.

Диаметр капилляров от 5 до 30 мкм.

Длина одного капилляра – 0,5–1,1 мм.

Общая поверхность всех капилляров — 1000 m^2 .

Общая площадь сечения всех капилляров большого круга — от 8000 до 11000 см 2 .

(a) Sphincters open

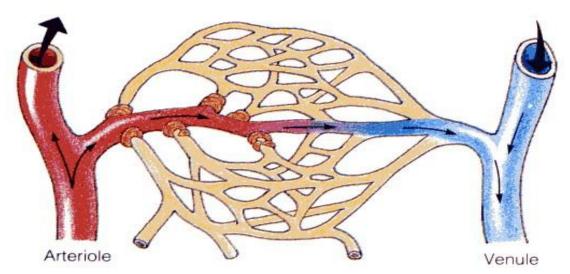
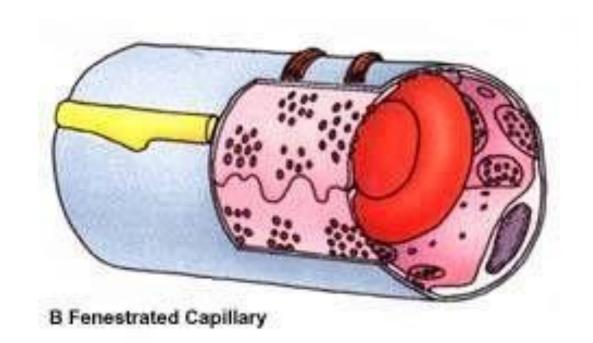
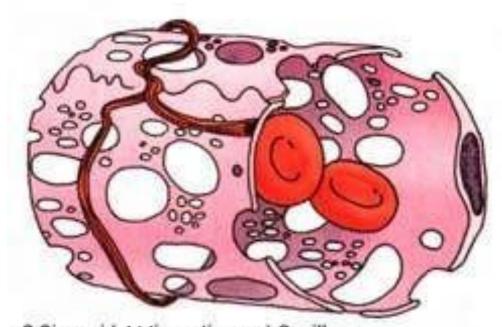


Рис. - Кровообращение в капиллярах


Классификация капилляров:

ткани, легких, ко-


• Соматический тип — имеет непрерывную эндотелиальную и базальную оболочки, имеет большое количество мельчайших пор (4-5нм). Легко пропускают воду и минеральные вещества. Встречаются в скелетной и гладкой мускулатуре, жировой и соединительной

A Continuous Capillary

• Висцеральный тип — имеет «окошки» (фенестры) с диаметром 0,1 мкм. Часто покрыты тончайшей мембраной. Встречаются в почках, ЖКТ, эндокринных железах.

Синусоидный тип — базальная мембрана частично отсутствует, эндотелиальная оболочка прерывиста, с большими интерстициальными просветами. Через них проходят жидкости, клетки крови. Локализованы в костном мозге, печени, селезенке.

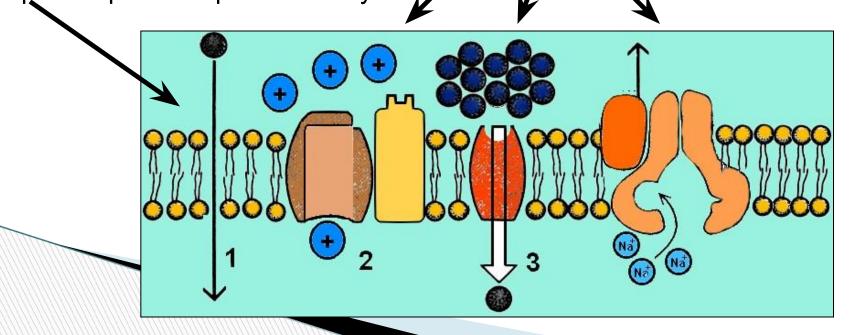
C Sinusoidal (discontinuous) Capillary

Три механизма (силы) управляют транспортом веществ через стенку капилляра

- □ Диффузия
- Фильтрация и реабсорбция
- □ Пиноцитоз

Диффузия происходит за счет градиента концентрации веществ

Диффузия имеет 2-сторонний характер, скорость очень высокая. Проходя через капилляр жидкость плазмы 40 раз, полностью обменивается с межклеточной жидкостью. Через общую обменную поверхность организма скорость диффузии приблизительно равна 60 л/мин, в сутки составляет в среднем 85000 л.


Перенос через мембраны

Неполярные

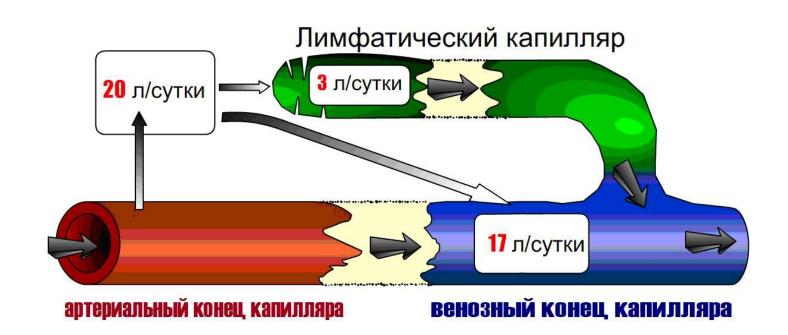
(жирорастворимые) вещества и мелкие незаряженные молекулы (O_2 , CO_2 , NH_3 и вода) могут диффундировать

непосредственно через стенку капилляров, без необходимости движения через поры. Скорость их диффузии через стенку капилляра во много раз выше скорости транспорта полярных молекул.

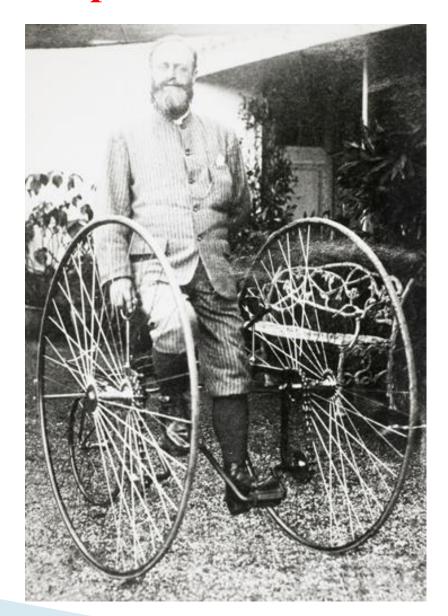
Полярные вещества (например, ионы Na⁺, K⁺, Cl⁻, Ca²⁺; различные небольшие, но полярные метаболиты, а также сахара, нуклеотиды, макромолекулы белка и нуклеиновых кислот) сами по себе не проникают через мембраны, для их транспорта необходимы переносчики и ионные каналы (поры).

Фильтрация и реабсорбция

- □ Проницаемость эндотелия капилляров не одинакова в разных тканях тела (капилляры печени проницаемы для альбумина, головного мозга нет)
- Венозные отделы капилляров более проницаемы, чем артериальные


Фильтрация — это выход плазмы крови и растворенных в ней веществ через стенку капилляра в интерстициальную жидкость

Гидростатическое давление в капиллярах – основная сила фильтрации

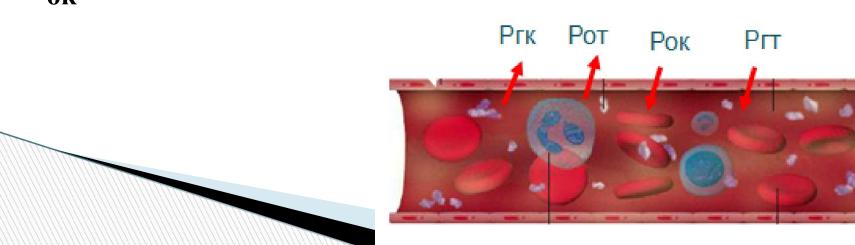

Реабсорбция — возврат жидкости из интерстициального пространства через эндотелиальную стенку в капилляр

Главная сила обратного всасывания в капилляр — коллоидно-осмотическое (онкотическое) давление плазмы

Микроциркуляторное русло - обменник

Силы процесса фильтрации и реабсорбции впервые описал Е.Старлинг в 1896 г

ЗАКОН УЛЬТРАФИЛЬТРАЦИИ СТАРЛИНГА


$$\mathbf{V} = \mathbf{K} \left[\mathbf{P}_{\Gamma K} + \mathbf{P}_{\mathbf{0}T} - (\mathbf{P}_{\Gamma T} + \mathbf{P}_{\mathbf{0}K}) \right]$$

где V - объем жидкости, проходящей через стенку капилляра в минуту,

К - коэфициент фильтрации,

- гидростатическое давление крови,

Р - гидростатическое давление крови Р - онкотическое давление ткани Р - гидростатическое давление ткани Р - онкотическое давление крови - онкотическое давление крови

ФД – фильтрационное давление

СВ – сила всасывания

Фильтрация возрастает:

- При повышении общего АД,
- При расширении резистивных сосудов,
- Увеличении объема циркулирующей крови,
- Повышении венозного давления,
- Снижении онкотического давления плазмы,
- При накоплении осмотически активных веществ межтканевой жидкости,
- Повышении проницаемости стенки капилляров.

Реабсорбция увеличивается:

- При снижении АД,
- Сужении резистивных сосудов,
- Уменьшении объема циркулирующей крови,
- Повышении онкотического давления плазмы.

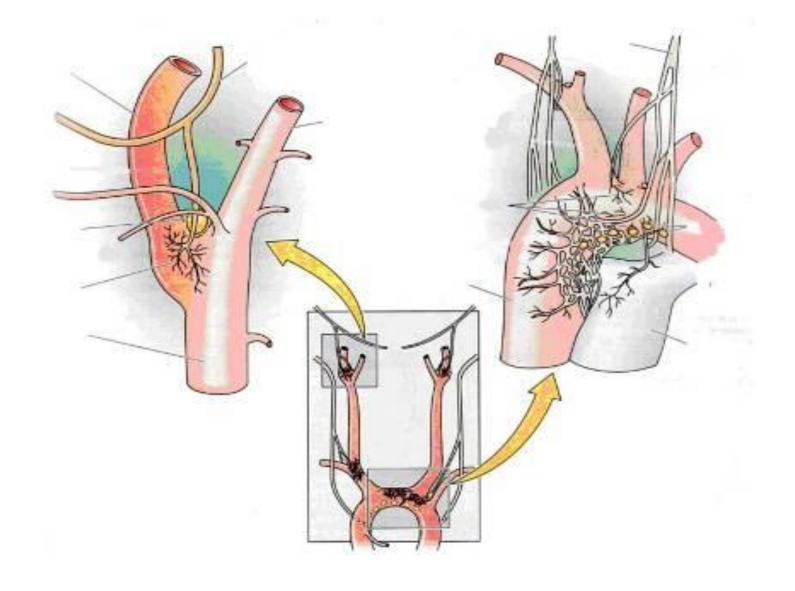
3. Регуляция сосудистого тонуса, как основного механизма поддержания давления крови.

Механизмы регуляции движения крови по сосудам можно разделить на две составляющие части:

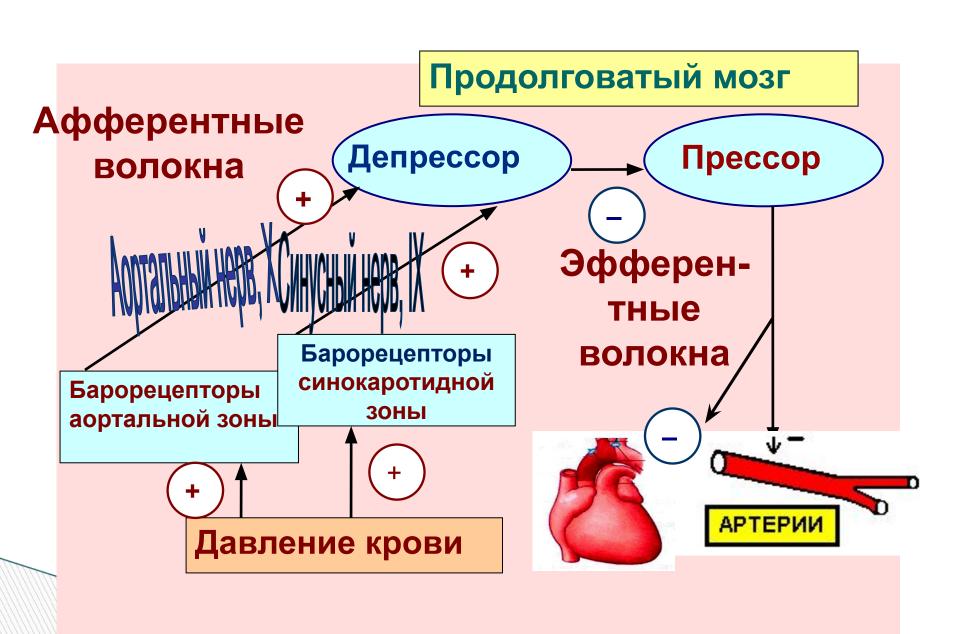
- 1. Центральные, определяющие величину АД и системное кровообращение;
- 2. Местные, регулирующие кровоток в отдельных органах и тканях.

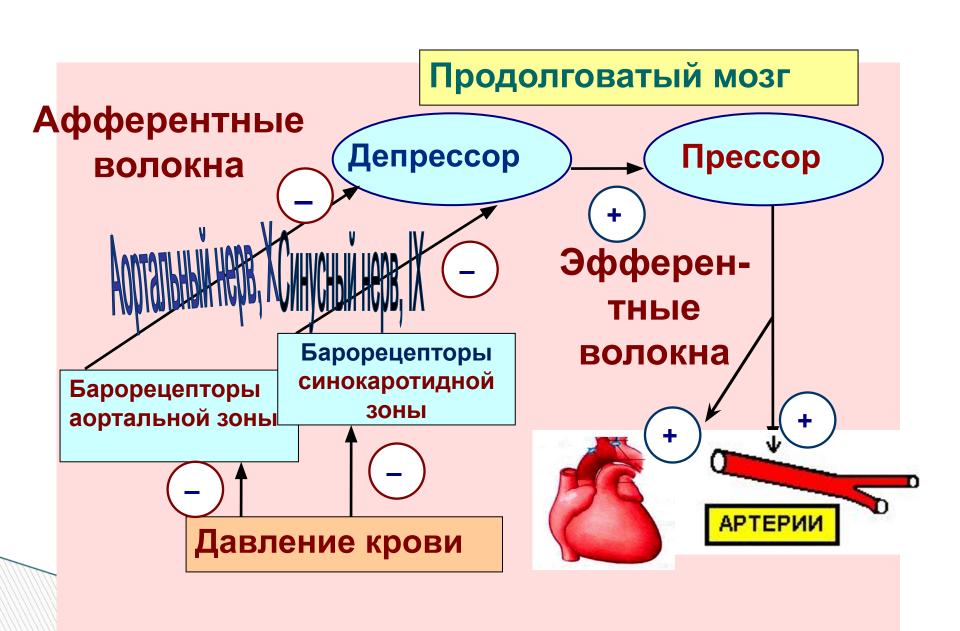
Гладкие мышцы сосудов постоянно сохраняют некоторое напряжение — мышечный тонус. В поддержании его ведущая роль принадлежит миогенной регуляции. Тонус сохраняется даже при полном отсутствии нервных и гуморальных влияний и получил название базального или периферического. Некоторые гладкие миоциты способны спонтанно возбуждаться, возбуждение передается другим клеткам и в результате возникают ритмические колебания тонуса эндогенная вазомоторика.

Нейрогуморальные механизмы регуляции кровотока

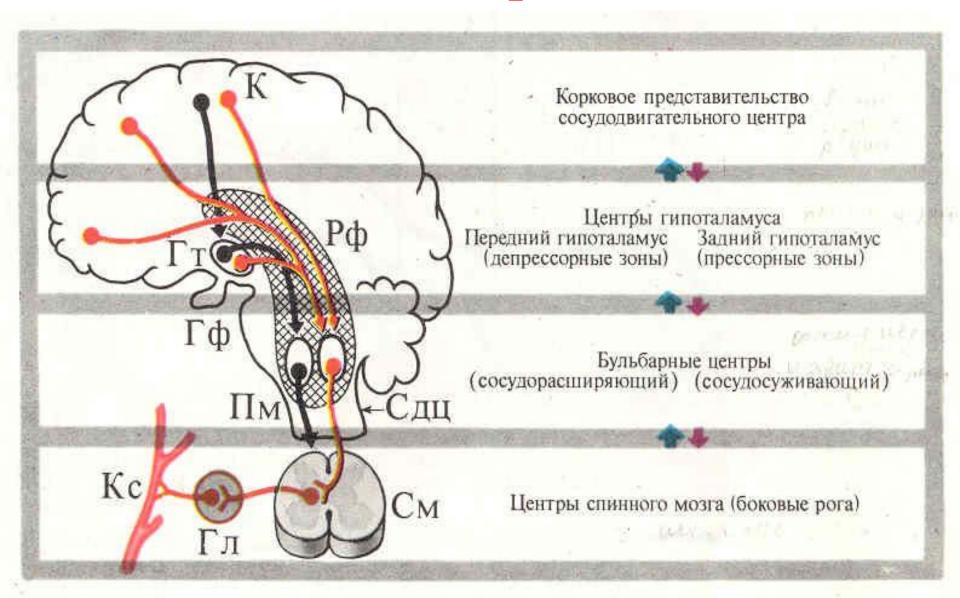

- 1. Афферентное (рецепторное) звено.
- 2. Центральное звено.
- 3. Эфферентное звено.

Различают несколько видов рецепторов, расположенных в сосудах (ангиорецепторов):


Барорецепторы (прессо-) реагируют на скорость и степень растяжения стенок сосудов. По механизму действия они являются механорецепторами.


Хеморецепторы — чувствительны к химическому составу крови.

Расположены ангиорецепторы в сосудах всей системы кровообращения, образуя единое рецептивное поле, в его состав входят рефлексогенные зоны. Из них наиболее значимые: аортальная, синокаротидная, зона сосудов легочного круга и другие.



Синокаротидная и аортальная рефлексогенные зоны

Компоненты сосудодвигательного центра

Депрессорная зона. Способствует снижению активности симпатического отдела нервной системы, расширению сосудов, снижению периферического сопротивления, активирует парасимпатические механизмы.

Прессорная зона. Способствует повышению АД, увеличивая сердечный выброс и периферическое сопротивление. Между первой и второй зонами существуют сложные синергические отношения.

Кардиоингибирующая зона (тормозящая). Воздействует на сердечно-сосудистую систему через блуждающий нерв. Это деление условно, т.к. зоны перекрывают друг друга.

СОСУДИСТЫЕ РЕФЛЕКСЫ по В.Н. Черниговскому

- Собственные сосудистые рефлексы или рефлексы с сосудистых рефлексогенных зон
- Сопряженные сосудистые рефлексы (боль, холод, растяжение желудка и др.)
- Условные рефлексы

СОСУДОДВИГАТЕЛЬНЫЕ НЕРВЫ

- Симпатические нервы, через:
 - α адренорецепторы констрикция и тонус
 - В адренорецепторы дилатация
 - м холинорецепторы дилатация
- Парасимпатические нервы, через: ацетилхолин - м-холинорецепторы - NO
 - дилатация сосудов мозга, в подчелюстной железе (хорда тимпани) и органах малого таза

брадикинин и гистамин - дилатация сосудов кожи, желудочно-кишечного тракта

ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ СОСУДИСТОГО РУСЛА

Вазоконстрикторы Вазодилататоры

Гистамин

Брадикинин

Норадреналин

Альдостерон

Вазопрессин

ренин

Двойной эффект:

Адреналин

Серотонин

Простагландины

