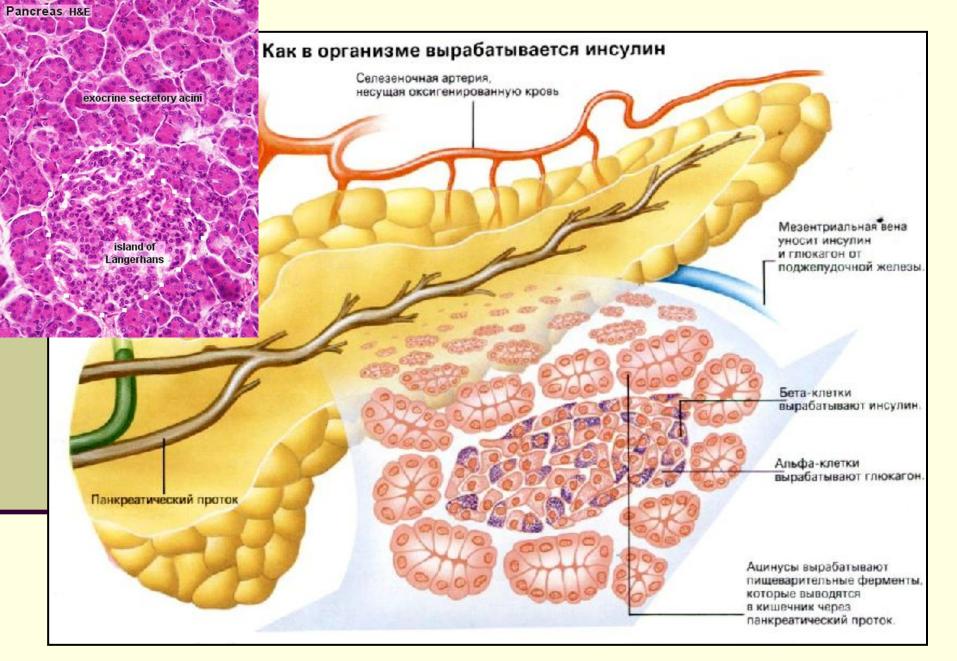


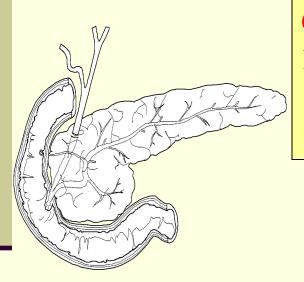
Учреждение образования «Гомельский государственный медицинский университет» Кафедра нормальной физиологии

Физиология эндокринной системы


Эндокринная функция поджелудочной железы

Лекция для студентов 2 курса

Лектор доцент Штаненко Н.И.


План лекции

- □ 1. Поджелудочная железа, ее эндокринная функция:
- 1.1. Гормоны поджелудочной железы. Механизмы их действия и физиологическая роль.
- 1.2. Регуляция инкреторной функции поджелудочной железы.
- 1.3. Гтпо- и гипергликимии. Сахарный диабет.

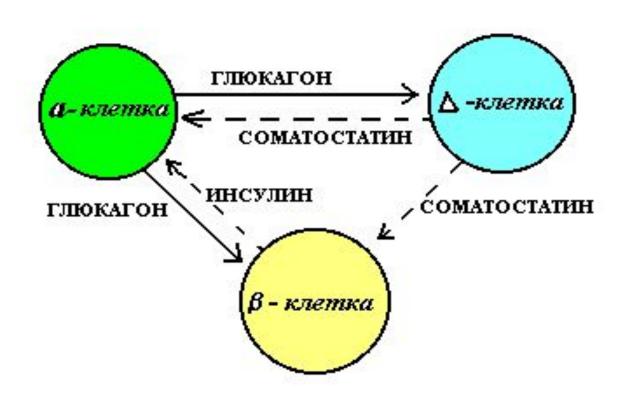
Поджелудочная железа

Клеточный состав островков Лангерганса поджелудочной железы

25% альфа - клетки: ГЛЮКАГОН

60% бета-клетки: ИНСУЛИН

10% дельта-клетки: СОМАТОСТАТИН

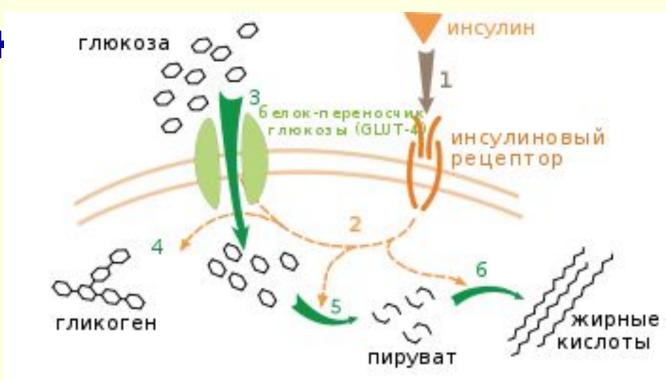

5% РР-клетки: панкреатический

полипептид

Характеристика эндокринных клеток островка поджелудочной железы

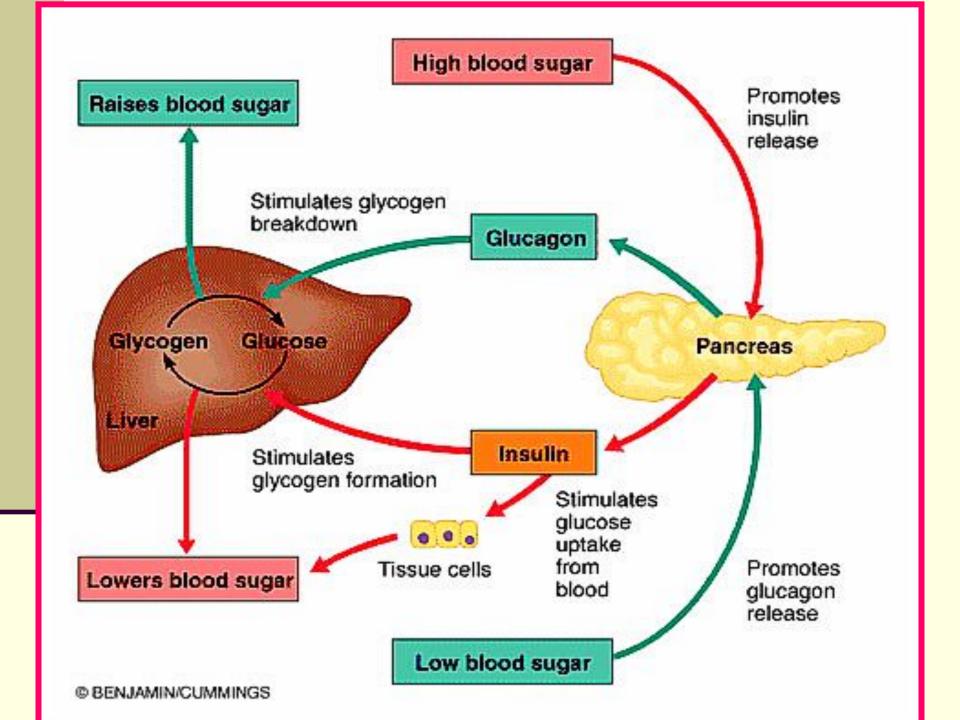
	Тип	Содержание	Секреторный гормон	Секреторные
	клеток	в островке, %		гранулы
	ά	15-20	Глюкагон	Плотная сердцевина, бледная периферия
l	ß	60-80	Инсулин	Кристаллоидные, различной формы
	D	5-10	СОМАТОСТАТИН	Гомогенные, низкой плотности, заполняют почти все клетку
	PP	>2	ПАНКРЕАТИЧЕСКИЙ	Различной формы

ВЗАИМОСВЯЗИ КЛЕТОК ОСТРОВКОВ ЛАНГЕРГАНСА

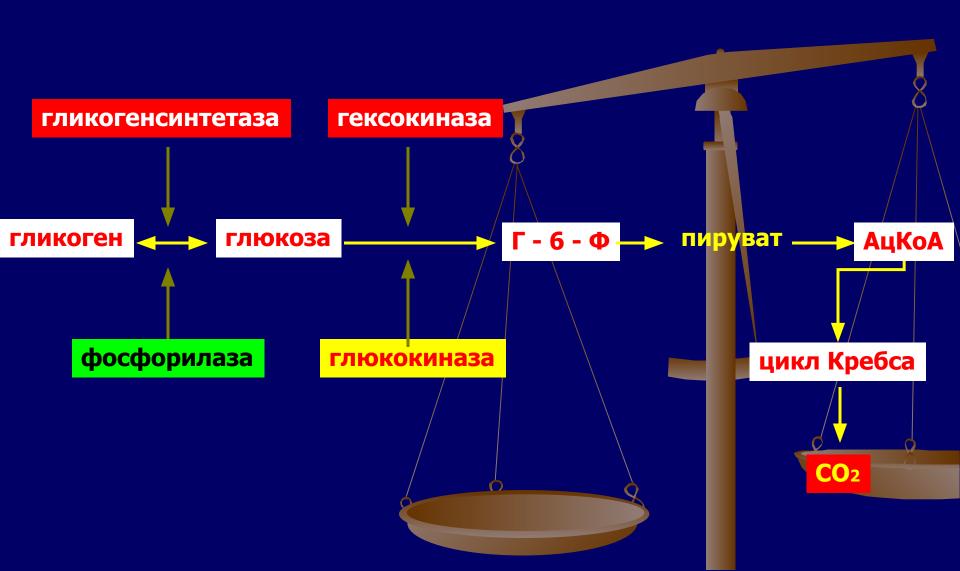

Гормоны поджелудочной железы

Инсулин

Гормон поджелудочной железы инсулин является белковым гормоном, состоит из 2 пептидных цепей. Синтезируется В-клетками островков Лангерганса поджелудочной железы.


Биологические эффекты инсулина во времени :

- Быстрые (секунды)
- Медленные (минуты)
- Отсрочен



Биологическое действие инсулина:

- 1. Ускорение трансмембранного транспорта в клетку глюкозы, аминокислот, свободных жирных кислот, ионов (К +, Mg ²⁺), нуклеотидов.
 - 2. Активация синтеза ДНК, РНК.
- 3. Стимуляция синтеза белка, гликогена, липидов.
- 4. Антагонизм по отношению к катаболическим гормонам.
- 5. Торможение протеолиза, липолиза и кетогенеза, гликогенолиза, глюконеогенеза.

* Динамика метаболизма глюкозы в организме

Влияние инсулина на обмен глюкозы в печени:

- активация фермента *глюкокиназы*, катализирующей фосфорилирование глюкозы, которая поступает в клетки печени активация фосфофруктокиназу и *гликогенсинтетазу*, катализирующую полимеризацию фосфорилированной глюкозы с образованием гликогена.
- ингибирование ферментов, расщепляющих гликоген (фосфорилазы), благодаря чему высокий уровень инсулина способствует консервации гликогена.

Основные <u>пути метаболизма</u> глюкозы в организме

Влияние инсулина на обмен глюкозы в мышечных клетках:

- Увеличение проницаемости мышечных клеток для глюкозы.
- Использование глюкозы в качестве источника энергии.
- Образование небольших количеств гликогена.

Обмен глюкозы в нервных клетках:

- Основной источник энергии для ЦНС.
- Потребление глюкозы нервными клетками не зависит от инсулина.

Влияние инсулина на жировой обмен:

- Усиливается синтез жирных кислот.
- Подавляется окисление жирных кислот.
- В липоцитах способствует превращению жирных кислот в триглицериды и их депонированию.
- Увеличивает транспорт глюкозы в липоциты, таким образом приводит к появлению αглицерофосфата.

Влияние инсулина на жировой обмен:

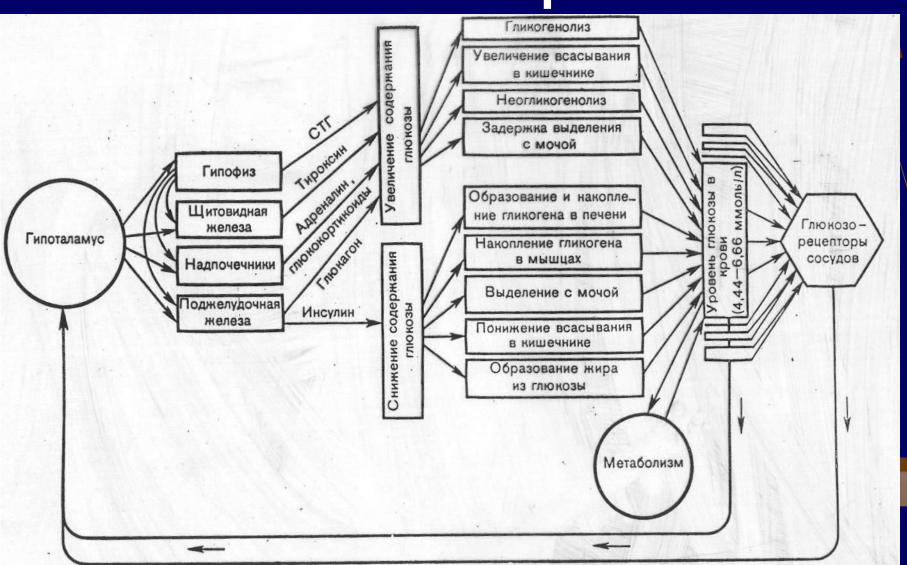
- Способствует синтезу триглицеридов из α-глицерофосфата и жирных кислот.
- Предотвращает расщепление триглицеридов.
- Активирует синтез липопротеин липазы, которая в эндотелии сосудов расщепляет триглищериды хиломикронов и липопротеины низкой плотности.

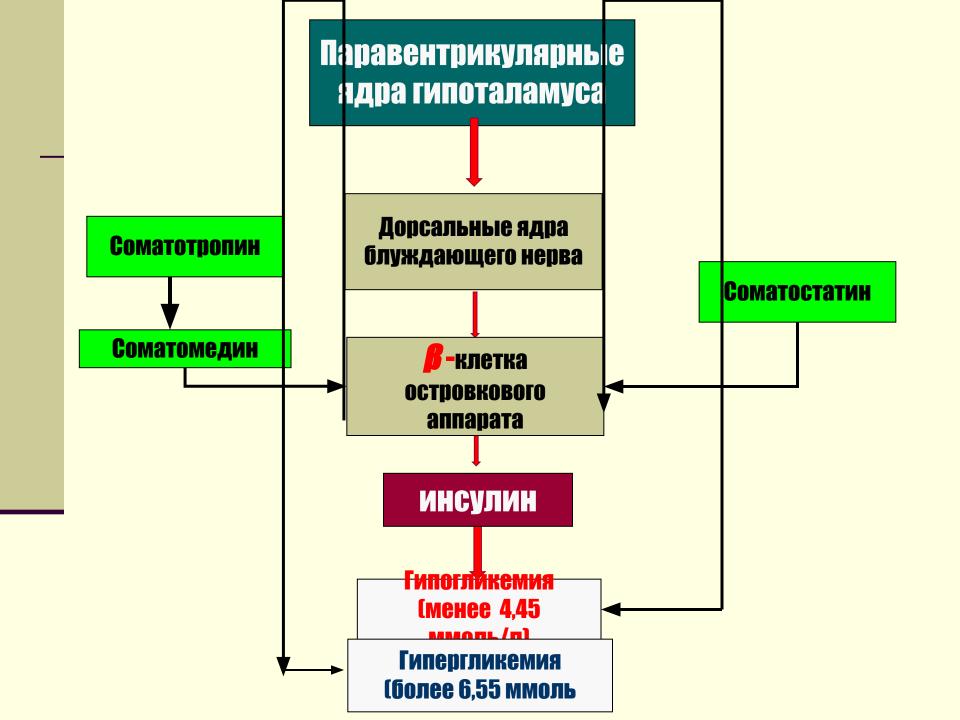
Влияние инсулина на обмен белков:

- Оказывает влияние на обмен белков и рост организма
- Стимулирует синтез белка и подавляет его катаболизм.

Механизмы действия:

- 1. Стимулирует поступление в клетки аминокислот.
- 2. Усиливает транскрипцию генов и трансляцию мРНК.
- 3. Подавляет катаболизм белка.
- 4. Уменьшает скорость глюконеогенеза из аминокислот.


ОСНОВНЫЕ ЭФФЕКТЫ ИНСУЛИНА


СУБСТРАТЫ	ПЕЧЕНЬ	АДИПОЦИТЫ	МЫШЦЫ
УГЛЕВОДЫ	▲ ГЛЮКОКИНАЗА ГЛИКОГЕН- СИНТЕТАЗА ФОСФОРИЛАЗА ГЛЮКОНЕОГЕНЕЗ	ЗАХВАТ ГЛЮКОЗЫ СИНТЕЗ ГЛИЦЕРОЛА	ЗАХВАТ ГЛЮКОЗЫ ГЛИКОЛИЗ СИНТЕЗ ГЛИКОГЕНА
жиры	АНТИКЕТОГЕНЕЗ	↑ ТРИГЛИЦЕРИДЫ СИНТЕЗ ЖИРН.К-Т ▶ ЛИПОЛИЗ	
БЕЛКИ	↓ ПРОТЕОЛИЗ	<i>-</i>	ЗАХВАТ АМИНОКИСЛОТ ПРОТЕОСИНТЕЗ

ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ УРОВЕНЬ ГЛИКЕМИИ

ФУС регуляции уровня глюкозы в крови

Стимуляторы секреции и антагонисты инсулина

инсулиназа

Антагонисты

адреналин

норадреналин

глюкокортикоиды

глюкагон

соматостатин

соматотропин

радреноблокаторы

простагландин Δ

глюкоза

инсулин

глюкоза

аминокислоты

жирные кислоты

кишечные гормоны

β-адреномиметики

холиномиметики

КОНТРОЛЬ СЕКРЕЦИИ ИНСУЛИНА

СТИМУЛИРУНОТ	подавляют	
ГЛЮКОЗА	СОМАТОСТАТИН	
АЦЕТИЛХОЛИН	НОРАДРЕНА ЛИН	
В-адреномиметики	Ингибиторы	
ГЛЮКАГОН	метаболизма глюкозы	
Гастрин, Секретин, ХЦК		
Аминок-ты, жирные к-ты		

Гипогликемия —

снижение уровня глюкозы в крови

Гипергликемия -

повышение уровня глюкозы в крови

ГИПОГЛИКЕМИЧЕСКИЙ ЭФФЕКТ ГОРМОНОВ

ИНСУЛИН

Увеличение поглощения глюкозы мышечной, жировой ткани и печены Уменьшение освобождения глюкозы из печени Уменьшение глюконеогенеза

СОМАТОСТАТИН

Подавление освобождения глюкагона
Подавление всасывания глюковы
киптечнике
В

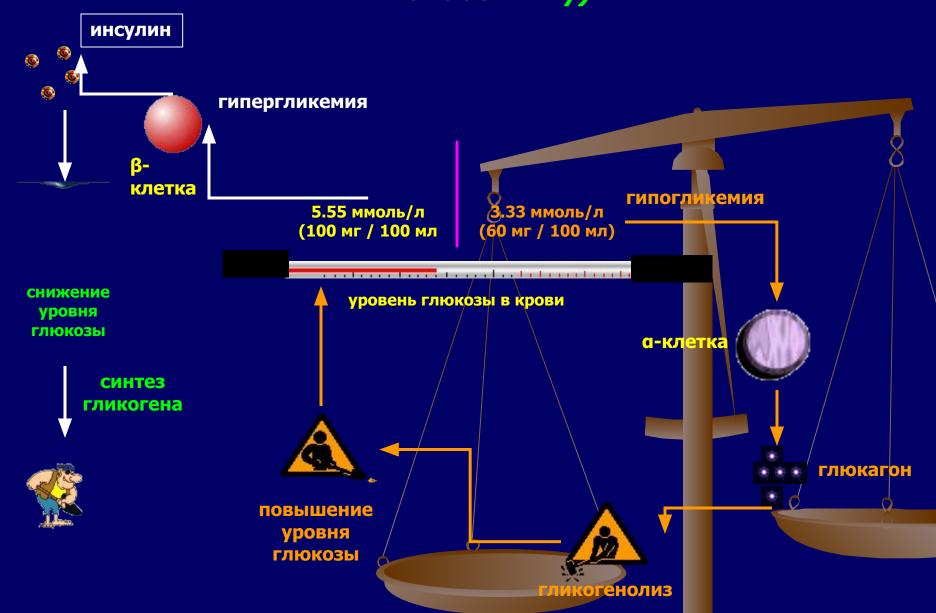
ОСНОВНЫЕ ГИПЕРГЛИКЕМИЧЕСКИЕ ЭФФЕКТЫ ГОРМОНОВ

ГЛЮКАГОН

Увеличение гликогенолиза Увеличение глюконеогенеза

КАТЕХОЛАМИНЫ

Увеличение гликогенолиза Подавление секреции инсулина

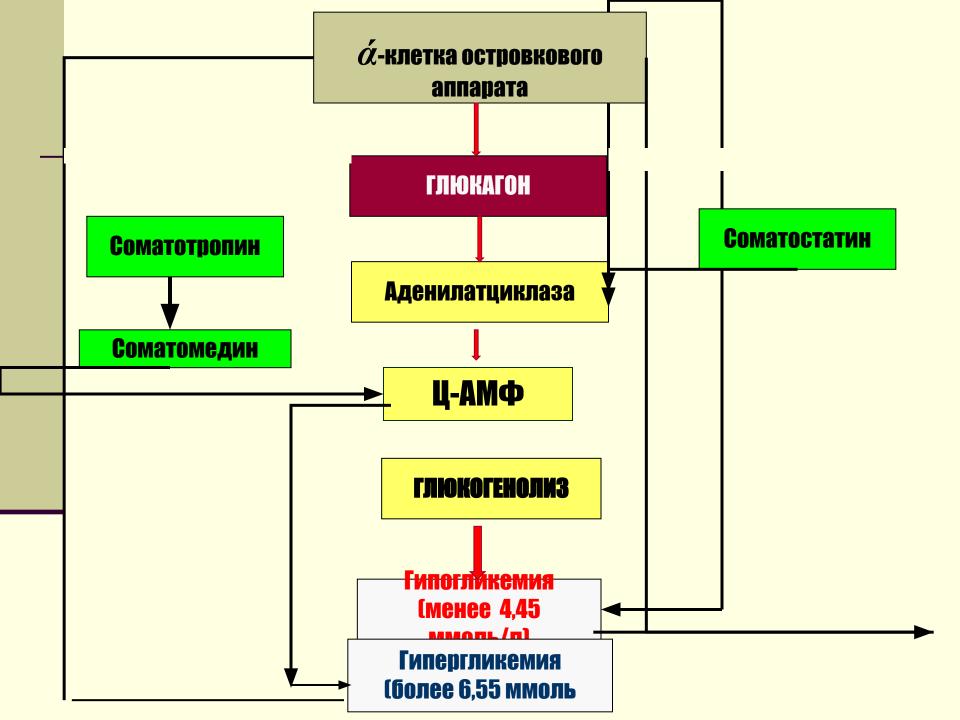

ГЛЮКОКОРТИКОИДЫ

Увеличение глюконеогенеза

СОМАТОТРОПИН

Уменьшение потребления глюкозы тканями из-за снижения их чувствительности к инсулину

* Участие инсулина и глюкагона в метаболизме глюкозы (по М.И.Балаболкину)

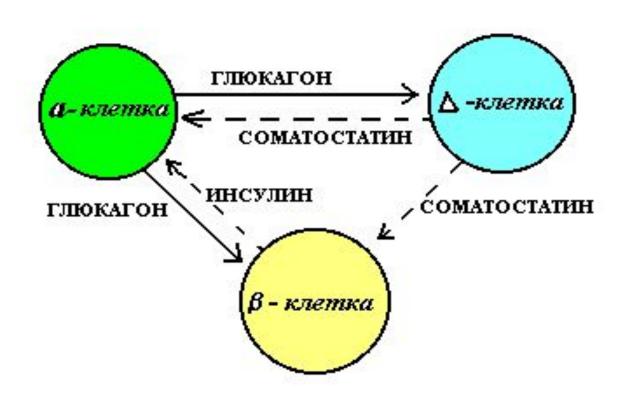


Гормоны поджелудочной железы

Глюкагон (антагонист инсулина)

Биологическое действие:

- Активирует глюкогенолиз и липолиз с быстрым повышением в крови глюкозы и жирных кислот;
- Активирует липолиз и освобождение триглицеридов из депо;
- Стимулирует секрецию СТГ, адреналина и кальцитонина;
- Тормозит перистальтику ЖКТ, секрецию соляной кислоты и пепсина в желудке;
- Тормозит секрецию поджелудочной железы;
- Оказывает положительное инотропное действие на миокард.


Гормоны поджелудочной железы

Соматостатин

Биологическое действие:

- Угнетает синтез в гипофизе гормона роста.
- 🔲 Угнетает секрецию инсулина и глюкагона.
- Тормозит перистальтику ЖКТ и секрецию пищеварительных соков.

ВЗАИМОСВЯЗИ КЛЕТОК ОСТРОВКОВ ЛАНГЕРГАНСА

Гормоны поджелудочной железы Панкреатический полипептид

(PP)

Биологическое действие:

- Стимулирует секрецию желудочного сока.
- Угнетает секрецию поджелудочной железы.

Дефицит инсулина приводит к:

- нарушению всех видов пластического,
- энергетического,
- водно-солевого обмена,
- страдают практически все функциональные системы.

При дефиците инсулина отмечается:

- Недостаточность периферического кровообращения.
- Снижение утилизации глюкозы тканями.
- Гипотензия.
- 🔲 🛮 Гликогенолиз в печени и мышцах.
- Снижение почечного кровотока.
- Гипергликемия.
- Анурия. Глюкозурия и осмотический диурез.
 Потеря воды и солей.
- 🔲 Дегидратация. Гемоконцентрация.

Недостаточность инсулина отражается на функциях эритроцитов:

ацидоз и дегидратация снижают содержание 2,3-ДФГ, что приводит к увеличению сродства гемоглобина к кислороду и снабжению им клеток организма.

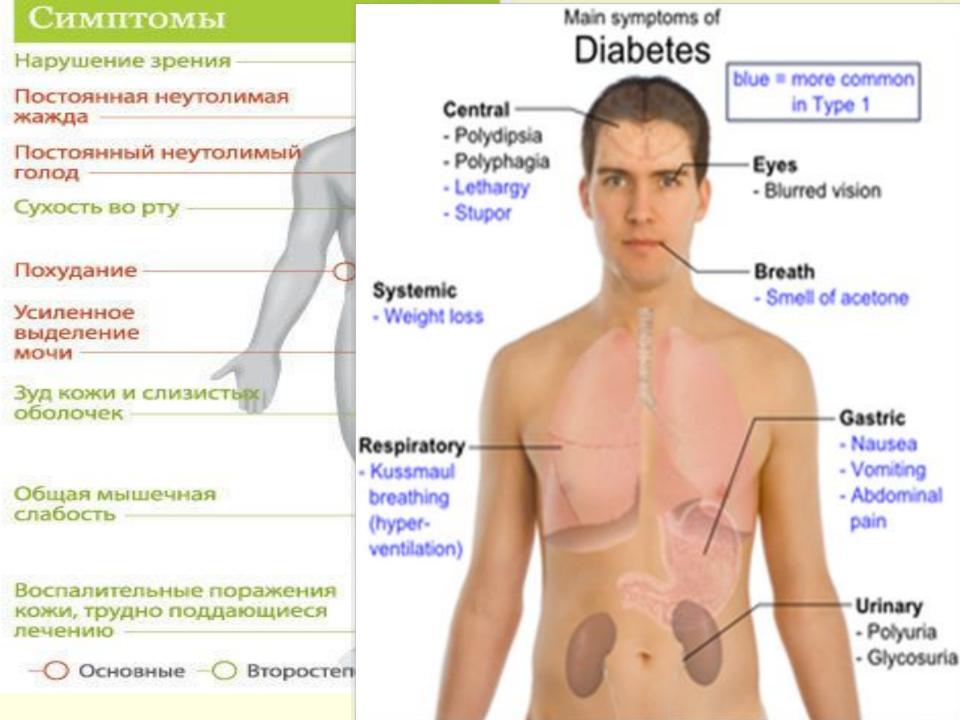
Сахарный диабет –

состояние хронической гипергликемии, которое обусловлено абсолютным или относительным дефицитом инсулина в организме, приводящее к патологическим изменениям в различных органах и тканях организма и нарушению обмена белков, жиров и углеводов.

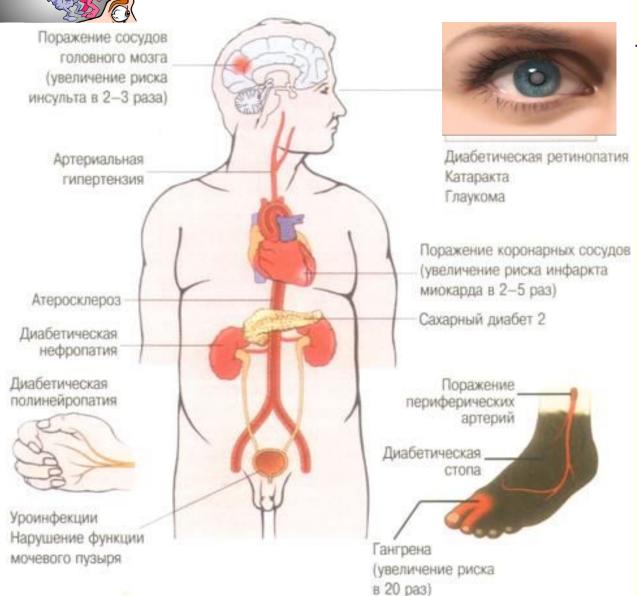
Классификация сахарного диабета:

- Диабот Типа (инсулинзависимый, ювенильный);
- Диабот іі типа (инсулиннезависимый);

Этиологическая классификация нарушений гликемии

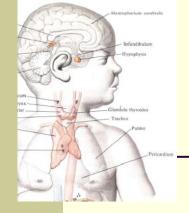

- 1. Сахарный диабет 1-го типа (деструкция бета-клеток, приводящая к абсолютной инсулиновой недостаточности):
 - а) аутоиммунный;
 - б) идиопатический.
- □ 2. Сахарный диабет 2-го типа (нарушение чувствительности рецепторов инсулина, синтез аномального инсулина).

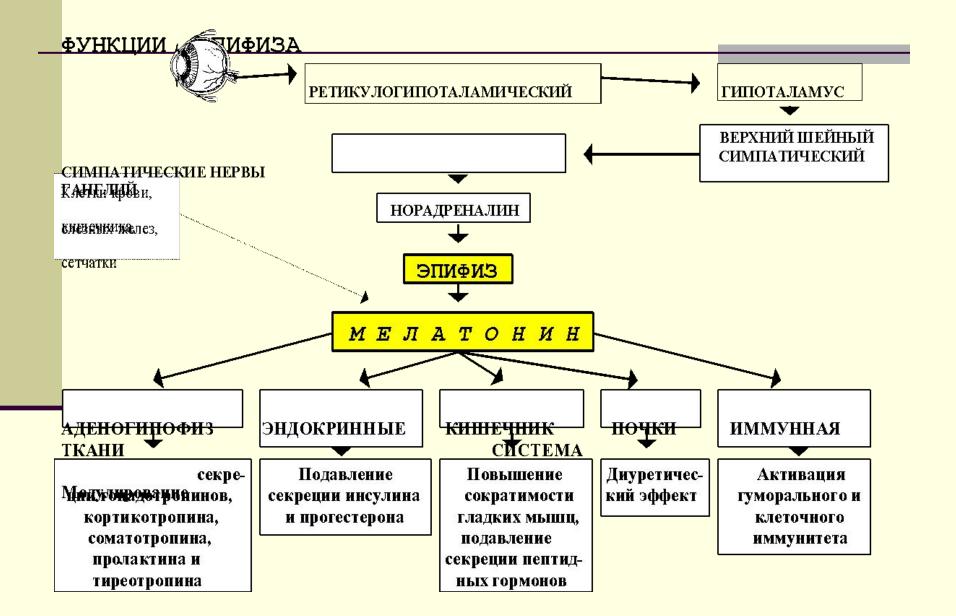
Этиологическая классификация нарушений гликемии


- □ 3. Другие специфические формы диабета (вторичный СД) — наиболее частые варианты:
- а) болезни экзокринной части поджелудочной железы (панкреатиты, опухоли, гемохроматоз, травмы и др.);
- б) эндокринопатии (феохромоцитома, гиперкортицизм, тиреотоксикоз, акромегалия, глюкого-нома);
- в) диабет, индуцированный лекарствами или химикалиями (симпа-томиметики, адреноблокаторы, глюкокортикостероиды);
- **2)** инфекции (крас-нуха, паротит, цитомегаповирус).
- 4. Гестационный диабет (диабет у беременных)

Главные симптомы сахарного диабета:

- повышение концентрации глюкозы в крови (гипергликемия),
- выделение глюкозы с мочой (глюкозурия),
- полиурия (увеличенный диурез),
- физическая и психическая астения (слабость).





Вилочковая железа Тимозин, тимопоэтин

Основные функции:

- обладают рядом общих регуляторных эффектов;
- оказывают положительное влияние на процессы синтеза клеточных рецепторов к медиаторам и гормонам;
- проявляют антагонизм по отношению к тироксину и синергизм к соматотропину;
- стимулируют разрушение ацетилхолина в нервномышечных синапсах.

ЭПИФИЗ

Внутренняя секреция эпифиза

Мелатонин

Физиологические эффекты:

- оказывает активное действие на меланофоры;
- □ вызывает у *неполовозрелых* животных задержку полового развития

