БАЛТИЙСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени И. КАНТА

РАЗДЕЛ III

МЕТОДЫ ФОРМИРОВАНИЯ И ПРЕОБРАЗОВАНИЯ СИГНАЛОВ. МОДУЛЯЦИЯ И ДЕТЕКТИРОВАНИЕ

к.т.н. Олег Романович Кивчун

Калининград 2012

ЛЕКЦИЯ № 11

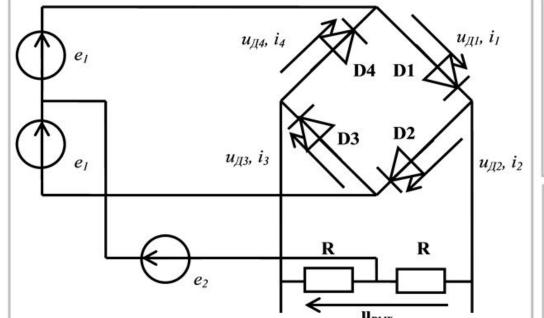
НЕЛИНЕЙНОЕ РЕЗОНАНСНОЕ УСИЛЕНИЕ И УМНОЖЕНИЕ ЧАСТОТЫ

- 1. Перемножение сигналов. Кольцевой балансный перемножитель.
- 2. Умножение частоты.
- 3. Линейное и нелинейное резонансное усиление.

СПИСОК ЛИТЕРАТУРЫ

Основная:

1.Теория электрической связи: Учеб. Для вузов / А.Г. Зюко, Д. Д. Кловский, В.И. Коржик, М. В. Назаров; Под ред. Д. Д. Кловского. – М.: Радио и связь, 1998. – 433 с.


Дополнительная:

- 1.Прокис Дж. Цифровая связь: Пер. с англ. / Под ред. Д.Д. Кловского. М.: Радио и связь, 2000. – 800 с.
- 2.Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. М.: Издательский дом «Вильямс», 2003. 1104 с.
- 3.Сухоруков А.С. Теория электрической связи: Конспект лекций. Часть 1. М.: МТУСИ, ЦЕНТР ДО, 2002. 65 с.

1. Перемножение сигналов. Кольцевой балансный перемножитель

КОЛЬЦЕВОЙ БАЛАНСНЫЙ ПЕРЕМНОЖИТЕЛЬ

Схема кольцевого (мостового) перемножителя

допущения

1. Все диоды имеют квадратичные вольтамперные характеристики (режим слабого сигнала) с одинаковыми коэффициентами a_0, a_1, a_2 :

$$i = a_0 + a_1 u_d + a_2 u_d^2$$
.

2. Сопротивления нагрузочных резисторов R одинаковы (симметрия схемы).

3. Один из входных сигналов поступает от двух идентичных источников (e_1) (симметрия схемы). Выходное напряжение определяется следующим выражением: $U_{\rm вых} = R (i_1 - i_2 - i_3 + i_4)$.

Произведем суммирование токов:
$$-i_3 = -a_0 - a_1(-e_1 + e_2) - a_2(-e_1 + e_2) \cdot 2; \\ +i_1 = a_0 + a_1(e_1 + e_2) + a_2(e_1 + e_2) \cdot 2; \\ +i_4 = a_0 + a_1(-e_1 - e_2) + a_2(-e_1 - e_2) \cdot 2; \\ -i_2 = -a_0 - a_1(e_1 - e_2) - a_2(e_1 - e_2) \cdot 2; \\ U_{\text{вых}} = R(0 + 0 + 0 + 8 \cdot a_2 \cdot e_1 \cdot e_2) = 8 \cdot R \cdot a_2 \cdot e_1 \cdot e_2.$$

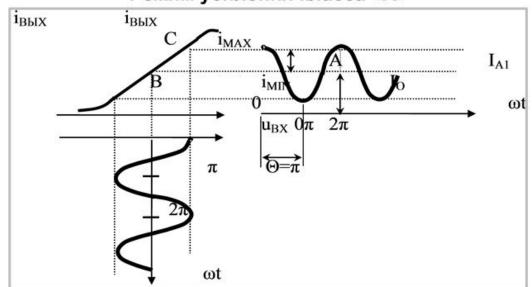
ПРИНЦИП УМНОЖЕНИЯ ЧАСТОТЫ

Умножение частоты заключается в получении на выходе ФУ колебания, частота которого в целое число раз больше частоты входного сигнала на вход умножителя частоты обычно подаётся синусоидальное напряжение u=0 cos Ωt , на выходе получается колебание с частотой $\omega_{\text{вых}}=n\cdot\Omega$.

Наличие в составе тока усилителя, работающего в нелинейном режиме, гармоник, кратных основной частоте возбуждения, позволяет использовать его в качестве умножителя частоты. Для этого необходимо настроить нагрузочный колебательный контур на частоту выделяемой гармоники. Амплитуды высших гармоник растут при уменьшении угла отсечки.

$$\mathbf{I_n} = \mathbf{E} \cdot \mathbf{S} (\mathbf{1} - \mathbf{cos}\ \Theta) \alpha_{\mathbf{n}}$$
, где $\alpha_{\mathbf{n}} = \mathbf{I_n}/\mathbf{I_m}$ – коэффициент Берга,

определяющий I_n при заданном максимальном токе через прибор I_m . Максимум n – го коэффициента Берга α_{nmax} достигается при $\Theta=2\pi/3n$.


Для каждой гармоники вводится своя средняя крутизна: $S_{cp} = \frac{I_n}{E} \cdot S(1 - \cos\Theta)\alpha_n$,

Соответственно, и внутреннее сопротивление электронного прибора приводится к используемой гармонике:

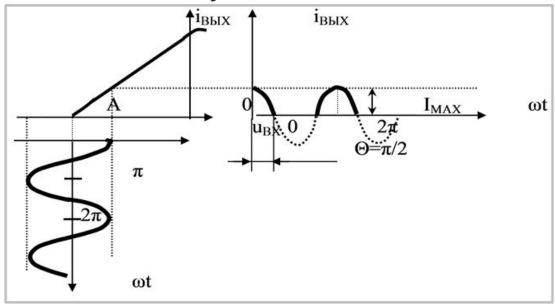
$$\mathsf{R}_{\mathsf{in}}^* = \frac{\mathsf{R}_{\mathsf{i}}}{\alpha_{\mathsf{n}} (\mathsf{1} - \mathsf{cos}\,\Theta)}$$
, коэффициент передачи $\mathsf{K}_{\mathsf{E}} = -\frac{\mathsf{S}_{\mathsf{cp}} \cdot \mathsf{Z}_{\mathsf{экв}}}{\mathsf{1} + \mathsf{Z}_{\mathsf{экв}} / \mathsf{R}_{\mathsf{i}}^*}.$

РЕЖИМ УСИЛЕНИЯ КЛАССА «А»

Режим усиления класса «А»

РЕЖИМ КЛАССА «А» усилительного элемента называется режим работы избирательного усилителя, при котором угол отсечки равен π.

УГЛОМ ОТСЕЧКИ называется часть периода гармонического сигнала, подводимого к активному элементу, уменьшенная в два раза и выраженная в угловых единицах, в течение которого через этот элемент протекает электрический ток.


Обозначается угол отсечки символом θ. В этом режиме форма выходного сигнала практически полностью повторяет форму входного. Для создания такого режима необходимо, чтобы рабочая точка «А» (точка покоя) в находилась в центре линейного участка характеристики усилительного элемента.

При воздействии входного напряжения его амплитуда не должна выходить за пределы этого линейного участка (крайние точки «В» и «С»). Поэтому этот режим называют <u>РЕЖИМОМ ЛИНЕЙНОГО УСИЛЕНИЯ</u>.

На выходе УЭ кроме гармонического сигнала с амплитудой первой гармоники I_{A1}, присутствует и постоянная составляющая тока I_O.

РЕЖИМ УСИЛЕНИЯ КЛАССА «В» и «АВ»

Режим усиления класса «В»

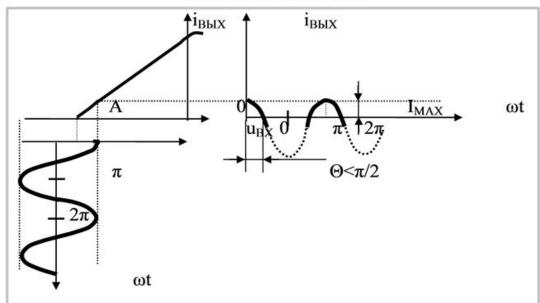
РЕЖИМОМ КЛАССА «В»

называется режим работы усилительного элемента, при котором угол отсечки θ равен π / 2.

Для получения режима класса «В» рабочая точка (точка А) выбирается так, как показано на рисунке.

При синусоидальном входном напряжении выходной ток имеет форму

чередующихся через полупериод синусоидальных импульсов: положительный полупериод пропускается, отрицательный – не проходит.


РЕЖИМ КЛАССА «AB»

Режим класса «AB» – режим работы УЭ, при котором угол отсечки находится в пределах (π / 2 ÷ π).

В этом режиме КПД ниже, чем в режиме класса В, но значительно выше, чем в режиме класса А. Недостатком режима являются сильные искажения формы сигнала. Этот режим применяется в выходных каскадах даже при относительно малых уровнях выходной мощности.

РЕЖИМ УСИЛЕНИЯ КЛАССА «С» и «D»

<u>РЕЖИМ КЛАССА «С»</u> – режим работы УЭ, при котором угол отсечки менее т / 2.

Для создания такого режима рабочая точка А должна находится левее нижнего сгиба входной характеристики.

Этот режим самый экономичный: η = 70 – 90 %. Вместе с тем усилители, работающие в режиме класса «С», вносят наибольшие искажения.

РЕЖИМ КЛАССА D

В режиме класса «D» усилительный элемент поочерёдно, как правило транзистор, находится в одном из двух состояниях: «полностью открыт» или «полностью закрыт». Переход из одного состояния в другое происходит практически мгновенно, что уменьшает потери энергии и резко увеличивает КПД.

Самым экономным режимом работы является режим класса «С» с углом отсечки менее градусов. При $\theta \to 1$ КПД $\eta \to 1$, но при этом полезная мощность стремиться к нулю. Это связано с тем, что с уменьшением угла отсечки θ и увеличением длительности паузы средняя мощность потерь уменьшается: $P_a = \frac{1}{T} \vec{J} \, i_a \, U_a \, dt \, .$

Таким образом, в результате изучения лекции № 11 удалось сделать следующие выводы:

- ФУ является «чистым» перемножителем произвольных сигналов. «Чистота» операции перемножения достигнута методом фазовой компенсации;
- более эффективными, но и более сложными умножителями частоты большой кратности являются радиоимпульсные умножители частоты, в которых полезная гармоника выделяется фильтром из последовательности радиоимпульсов;
- наличие колебательного контура, в качестве нагрузки, в резонансном усилителе позволяет использовать его как в линейном, так и в нелинейных режимах работы.
 Апериодические усилители, для сравнения, могут работать только в линейном режиме;
- для получения минимальных искажений используют линейный режим, для получения максимального КПД – нелинейные.

СПИСОК ЛИТЕРАТУРЫ

- 1. Прокис Дж. Цифровая связь: Пер. с англ. / Под ред. Д.Д. Кловского. М.: Радио и связь, 2000. 800 с.
- 2. Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. М.: Издательский дом «Вильямс», 2003. 1104 с.
- 3. Сухоруков А.С. Теория электрической связи: Конспект лекций. Часть 1. М.: МТУСИ, ЦЕНТР ДО, 2002. 65 с.
- 4. Сухоруков А.С. Теория цифровой связи: Учебное пособие. Часть 2. М.: МТУСИ, 2008. 53 с.
- 5. Аджемов А.С. Мир информационной реальности. М.: ИРИАС, 2006. 296 с.
- 6. Каганов В.И., Битюков В.К. Основы радиоэлектроники и связи: Учеб. пособие для вузов. М.: Горячая линия-Телеком, 2007. 542 с.
- 7. Стеценко О.А. Радиотехнические цепи и сигналы: Учебник. М.: Высш. шк., 2007. 432 с.
- 8. Санников В.Г. Сборник задач по курсу «Теория электрической связи»: Учеб. пособие. Часть 1. М.: МТУСИ, 1992. 62 с.
- 9. Санников В.Г. Сборник задач по курсу «Теория электрической связи»: Учеб. пособие. Часть 2. М.: МТУСИ, 2001. 65 с.
- 0. Санников В.Г. Дифференциальная импульсно-кодовая модуляция: Учеб. пособие. М.: МТУСИ, 2006. 56 с.

СПАСИБО ЗА ВНИМАНИЕ!