Характеристика крови как части внутренней среды организма

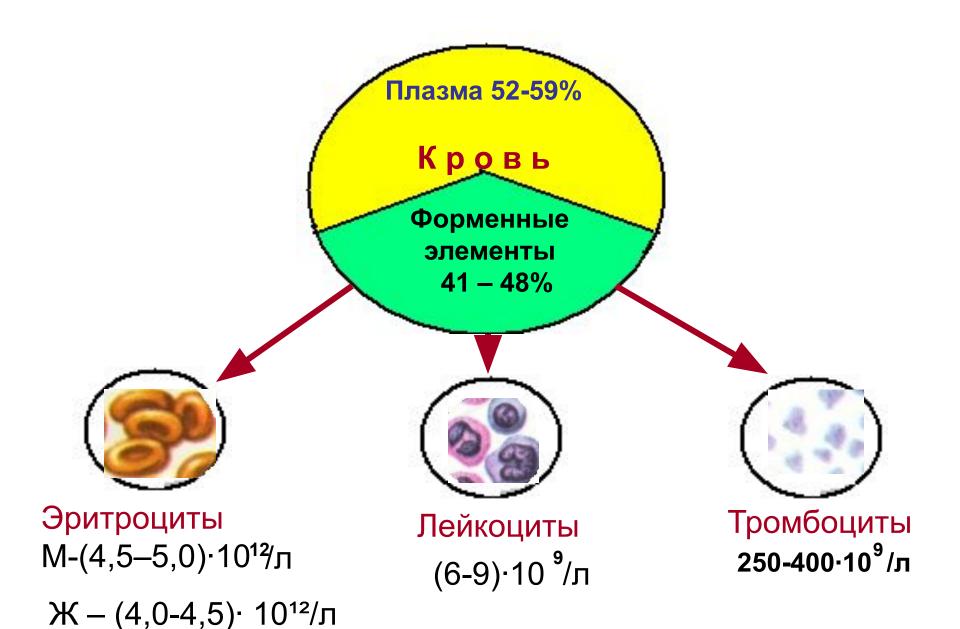
Функции крови

Транспортная

-перенос различных веществ к тканям и от них

Защитная

- Защита от чужеродных белков и токсинов;
- -Защита от кровопотери;
- -Защита от внутрисосудистого свертывания


Регуляторная, модуляторная

Гуморальная регуляция

Состав крови

Гематокрит – часть объема крови, приходящаяся на форменные элементы.

Сухое вещество 9 – 10%

Состав:

Белки — 6-8%

Альбумины 4-5 %

Вода 90- 91%

Фибриноген 0,4%

Глобулины 2-3%

- Глюкоза, нейтральные жиры, липоиды.
- аминокислоты, полипептиды.
- Утилизируются клетками.
- Продукты распада белков: мочевина, мочевая кислота,
- креатинин, аммиак.
- Выводятся из организма.
- Электролиты.

Роль составляющих плазмы

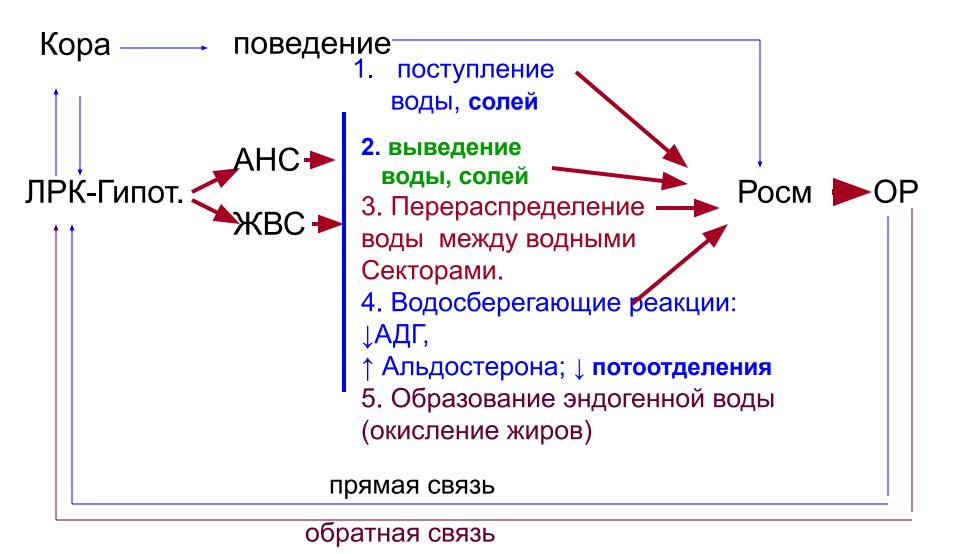
Функция электролитов

- 1.Обеспечивают физиологические свойства клеток.
- 2.Создают осмотическое давление (Росм.) На 96%. создается растворенным в крови NaCl.
- (B N = 7,6 atm.).
- Такое же осмотическое давление создает 0,85% раствор NaCl физиологический раствор.

Виды растворов.

- 1.Изотонические
- 2. Гипертонические
 - 3. гипотонические

Роль белков плазмы крови


- 1.Транспортная переносят веществ к месту потребления
- (ЖК, гормонов, билирубина, лекарств и т.д.).
- 2.Создают онкотическое давление (0,03 -0,04 атм.). Удерживают около себя воду.

- 3. Питательная функция.
- 4. Буферная функция.
- 5. Защитная функция. Участвуют в гемостазе (факторы свертывания крови), иммунных реакциях
- (антитела)

Константы крови как системообразующие факторы

- Изменение состава внутренней среды обеспечивает запуск и активацию регуляторных систем, восстанавливающих гомеостатические величины.
- Формируются специфические функциональные системы по поддержанию Росм., ОЦК и АД, рН и др. величин.

Функциональная система поддержания Росм.

Объем циркулирующей крови (ОЦК)

50 % в сосудах

500 мл в селезенке

50 % в депо

1 л в коже

до 1 л в печени

Выход крови из депо

при снижении содержания

O₂ в крови

при повышении кислотности крови

при кровопотере

Кровопотеря

• Потеря ¼ ОЦК быстро и ⅓ медленноне смертельна. Успевают активироваться компенсаторные механизмы.

Последствия кровопотери

- 1.Уменьшается ОЦК и снижается ее транспортная, защитная функция.
- 2.Падает АД и нарушается газообмен в тканях.

Кислотно-щелочное равновесие

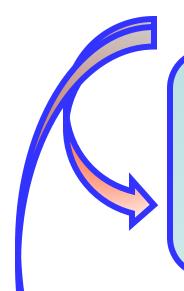

• КЩР является одним из важнейших и наиболее стабильных показателей постоянства внутренней среды.

- Активную реакцию среды оценивают показателем рН.
- рН это водородный показатель.
- Так обозначается отрицательный десятичный логарифм концентрации ионов водорода: log[H⁺].
- Для нейтрального раствора pH = 7, кислого <7, щелочного pH > 7.

- рН жесткая гомеостатическая величина
- Сдвиг рН крови даже на 0,1 относительно нормы вызывает нарушение функций СС, дыхательной систем;
- на 0,3 коматозное состояние;
- на 0,4 состояния, не совместимые с жизнью.

Поддержание рН крови

Постоянство рН поддерживается


Физико-химическими механизмами

(буферными системами внутренней среды, тканевыми обменными процессами)

Физиологическими гомеостатическими системами.

Это органы выведения : легкие, почки, ЖКТ, кожа, костная ткань

Постоянство рН поддерживается

Регуляцией реабсорбции бикарбонатов в почках

Буферные системы крови

- - смеси, препятствующие изменению рН среды при внесении в нее кислот или оснований.
- Буфер образован слабой кислотой и ее солью с сильным основанием.

В крови имеется 4 буферных системы:

- Карбонатный буфер (53% общей буферной емкости).
- H₂CO₃/ NaHCO₃

- Фосфатный (5% общей буферной емкости).
- •NaH₂PO₄/Na₂HPO₄

- •Гемоглобиновый (35% общей буферной емкости).
 - Представлен восстановленным гемоглобином (HHb)
 - •и его калиевой солью (KHb).

- Буфер в тканях играет роль щелочи, связывая Н (→);
- в легких роль кислоты,
 отдавая Н (←);

•Белковый (7% общей буферной емкости).

Работа буферных систем

- Кислые вещества крови связываются щелочными компонентами буферных систем,
- Щелочные вещества связываются кислотными компонентами буферных систем.

Щелочной резерв крови

• образован щелочными компонентами буферных систем.

Работа органов выведения

- **1. Легкие** –удаляют летучую угольную кислоту в виде CO_2 .
- •При возрастании концентрации ионов H⁺ увеличивается вентиляция легких.

2. Почка обеспечивает:

- •-удаление ионов Н⁺ путем секреции их в канальцах нефрона;
- •-восстанавливает соотношение кислотных и основных компонентов буферных систем

3.Печень.

- - нейтрализует органические кислоты;
- -удаляет ион H⁺ путем синтеза аммиака NH₃;
- -удаляет молочную кислоту (в процессе глюконеогенеза превращает ее в глюкозу).

Желудок.

- •-регулирует pH путем выведения ионов H+ и Cl.
- •Кожа.
- -удаление мочевой кислоты.

Варианты изменения рН крови

Ацидоз – закисление крови (рН 7,3-7,0) Респираторный связан с нарушением выделения СО₂ в легких (например, при пневмонии)

Нереспираторный или метаболический. Связан с накоплением нелетучих кислот при недостатке кровообращения, уремии, при поступлении кислот извне.

Варианты изменения рН крови

Алкалоззащелачиван ие крови (рН 7,45-7,80) Респираторный – при гипервентиляции легких

Нереспираторный - при потере кислот и накоплении оснований

Кровезамещение

• Кровезамещение и кровезамещающие растворы используется для решения определенных задач:

- 1. плазмозамещение (с целью поддержания Р осм, рН, онкотического давления);
- 2.восстановление дыхательной функции;
- 3.снятие интоксикации;
- 4.повышение защитной функции крови;
- 5.обеспечение питания организма.

Правила переливания крови.

- 1. Определить группу крови во флаконе.
- 2. Rh фактор.
- 3. Пробу на индивидуальную совместимость:
- на стекле капля сыворотки или плазмы реципиента + кровь донора (10 : 1).

- 4. Проба на резус совместимость:
- в пробирку 2 капли сыворотки или плазмы реципиента + 1 капля крови донора и 1 каплю 33% раствора полиглюкина,
- 3 минуты перемешиваем, затем + 2 5мл физиологического раствора.

- 5. Трёхкратная биологическая проба:
- 3 раза по 15 20мл вливаем донорскую кровь струйно с интервалом 3 минуты.
- 6. Остальную часть крови перелить капельно или струйно (по показаниям).

Транспортная функция крови

Заключается в переносе кровью различных веществ.

Специфической особенностью крови является транспорт O₂ и CO₂.

Транспорт газов осуществляется гемоглобином эритроцитов и плазмой.

Соединения гемоглобина с газами.

• Соединения гемоглобина с кислородом называется оксигемоглобином (HbO₂), обеспечивает алый цвет артериальной крови.

Кислородная емкость крови (КЕК).

- Это количество кислорода, которое может связать 100г крови.
- Известно, что один 1 г. гемоглобина связывает 1,34 мл O_2 . КЕК = $Hb\cdot1,34$.

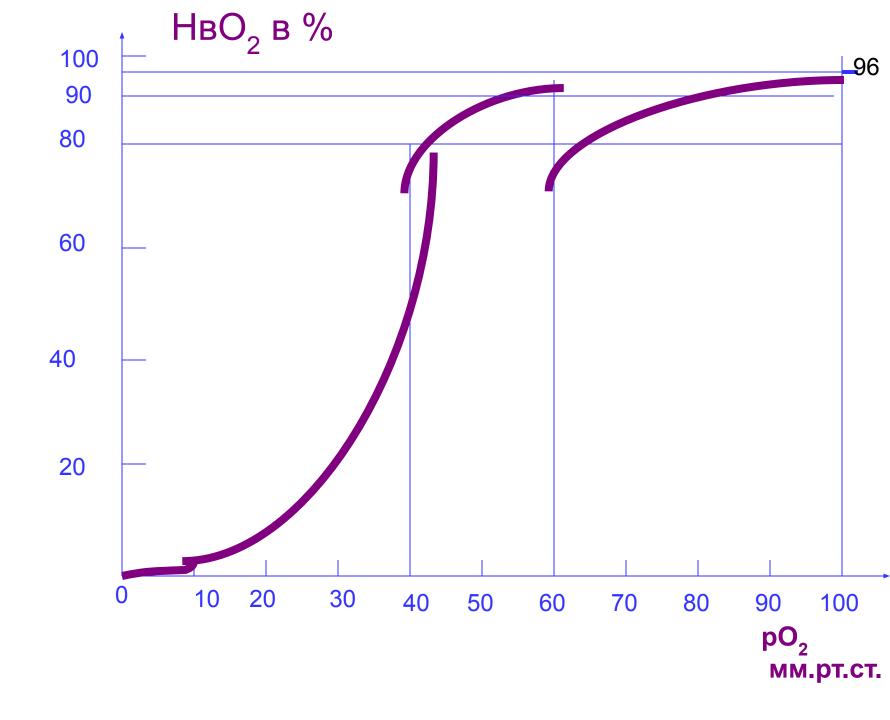
- Для артериальной крови КЕК = 18 20 об% или 180 200 мл/л крови.
- В венозной крови O_2 -120мл/л.

Кислородная емкость зависит от:

- 1) количества гемоглобина.
- 2) температуры крови (при нагревании крови снижается)
- 3) рН (при закислении снижается)
- 4) содержания CO₂ (при повышении снижается).

Патологические соединения гемоглобина с кислородом.

- Метгемоглобин.
- При действии сильных окислителей Fe^{2+} переходит в Fe^{3+} .


Факторы влияющие на образование HBO_2 .

- 1) Напряжение O_2 в крови.
- Графически зависимость количества HbO_2 от напряжения O_2 можно представить в виде кривой диссоциации оксигемоглобина.
- Кривая носит S образный характер.

- При напряжении $O_2 = 0$ Hb $O_2 = 0$.
- Повышение содержания O_2 вызывает не совсем пропорциональный рост количества HbO_2 .

- При повышении PO_2 с 10 до 40мм рт ст.
- количество НьО₂ быстро нарастает до 80%.
- При 60мм рт ст. Нb насыщается O_2 на 90%.
- При дальнейшем увеличении PO₂ количество HbO₃ увеличивается до 96%.

• Кривая диссоциации оксигемоглобина показывает сродство Hb к O₂

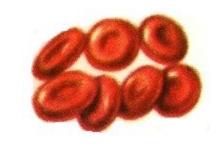
Соединения гемоглобина с СО2

- называется карбгемоглобин HbCO₂.
- В артериальной крови его содержится 52 об% или 520 мл/л.
- В венозной 58 об% или 580 мл/л.

•Патологическое соединение гемоглобина с СО называется карбоксигемоглобин (HbCO).

Миоглобин.

- Это гемоглобин, содержащийся в мышцах и миокарде.
- Обеспечивает потребности в кислороде при сокращении мышц с прекращением кровотока (для скелетных мышц
 - изометрический режим).


Транспорт газов плазмой крови

• Транспорт кислорода

- В плазме при нормальном атмосферном давлении растворяется 2,5 мл O_2 в 1 л крови.
- При повышении давления растворимость О₂ повышается до 7 мл в 1 л.

Tранспорт CO₂

- Общее содержание ${\rm CO_2}$ в венозной крови 580 мл в 1 л крови.
- Транспортные формы CO₂.
- 1) В виде H₂CO₃ 25мл;
- 2) В виде карбгемоглобина 50мл.
- 3) В виде бикарбонатов 480мл.
- В виде натриевой соли угольной кислоты в плазме 340 мл.
- К соли в эритроцитах 140мл.
- 4) В растворенном в плазме состоянии 25 мл.

Характеристика

- Превращение Эр в сфероциты приводит к тому, что они не могут пройти через капилляр и задерживаются в селезенке, фагоцитируются.

- 15% Эр имеют различную форму, размеры и отростки на поверхности.
- Диаметр эритроцита = 7,2 7,5 мкм.
- Больше 8 мкм макроциты.
- Меньше 6 мкм микроциты.

Количество эритроцитов

- $M 4.5 5.0 \cdot 10^{12}/\pi$.
- $\mathbb{K}-4.0-4.5\cdot 10^{12}/\mathrm{J}$
- Снижение содержания эритроцитов эритропения.
- Повышение эритроцитоз

Функции эритроцитов.

- 1) Транспорт О₂, СО₂, АК, пептидов, нуклеотидов к различным органам для регенеративных процессов.
- 2) Адсорбирование и инактивирование токсичных продуктов эндогенного, экзогенного, не бактериального происхождения.
- 3) Участие в регуляции рН крови за счет гемоглобинового буфера.

- 4) Эр принимают участие в свертывании крови и фибринолизе, сорбируя на всей поверхности факторы свертывающей и противосвертывающей систем.
- 5) Эр участвуют в иммунологических реакциях, например агглютинации, т. к. в их мембранах есть антигены агглютиногены.

Гемоглобин (Hb)

- В каждом эритроците около 28 млн молекул **Hb**.
- На долю **Нb** приходится 34% общей и 90 – 95% сухой массы эритроцита.
- Функции:
- Он обеспечивает транспорт О2 и СО2.

Содержание гемоглобина.

- М. от 130 до 160 г/л (ср. 145г/л).
- Ж. от 120 до 140г/л.
- Идеальное содержание Нв 167г/л.

Состав Hb

- Hb- сложный хромопротеид.
- Состоит из железосодержащих групп гема и белкового остатка глобина.
- На долю гема приходится 4%, глобина 96%.
- Гем построен из 4 молекул пиролла, образующих порфириновое кольцо, в центре которого находится атом железа (Fe²⁺).

Виды Hb.

- 7 12 неделя внутриутробного развития Hb P (примитивный).
- На 9-ой неделе Hb F (фетальный).
- К моменту рождения появляется Hb A.
- В течение первого года жизни Hb F полностью заменяется на Hb A.

- Hb P и Hb F имеют более высокое сродство к О₂, чем Hb A, т. е. способность насыщаться О₂ при меньшем его содержании в крови.
- Сродство к O_2 определяют глобины.

2. Снижение содержания О2

- Это главный стимулятор эритропоэза.
- Хронический дефицит О₂ являются системообразующим фактором,
- который воспринимается центральными и периферическими хеморецепторами.

Имеет значение хеморецептор ЮГКП.

- Он стимулирует образование эритропоэтина в почке, который увеличивает:
- 1) дифференцировку стволовой клетки.
- 2) ускоряет созревание эритроцитов.
- 3)ускоряет выход эритроцитов из депо костного мозга

Факторы, необходимые для образования эритроцита.

Роль витаминов.

Витамин В 12

- В₁₂ внешний фактор кроветворения (для синтеза нуклеопротеидов, созревания и деления ядер клеток).
- Причина В₁₂ дефицита отсутствие внутреннего фактора Кастла (гликопротеин, связывает В₁₂ и предохраняет от расщепления пищеварительными ферментами).

Фолиевая кислота

- Необходима для синтеза ДНК, глобина.
- Содержится в овощах (шпинат), дрожжах, молоке.

- B₆ для образования гемма.
- •В2 для образования стромы,
- Пантотеновая кислота синтез фосфолипидов.

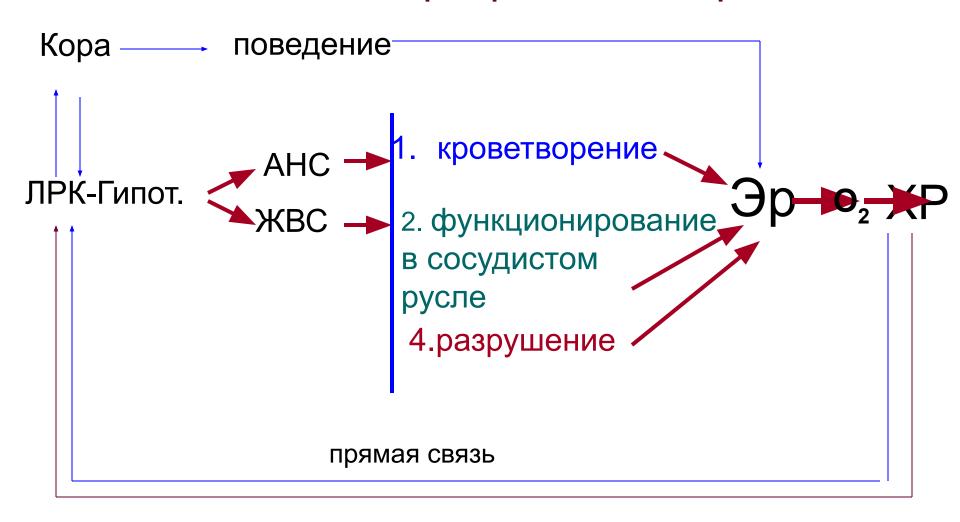
- Витамин С поддерживает метаболизм фолиевой кислоты, железа, (синтез гемма).
- Витамин Е , РР— защищает фосфолипиды мембраны эритроцита от перекисного окисления, усиливающего гемолиз эритроцитов.

- Для синтеза гемоглобина и образования эритроцитов требуются железо.
- 95% суточной потребности получает организм из разрушающихся эритроцитов. Ежесуточно требуется 20 25 мг Fe.

• микроэлементы: Fe, Co, Cu, Mn, Cu, Mn, Zn, Ni, Co, селен

Эритропоэз стимулируют

- Тропные гормоны аденогипофиза за счет усиления секреции гормонов эндокринных желез.
- Механизм стимулируют образование эритропоэтина в почке.
- Андрогены
- Инсулин
- Катехоламины через β AP,
- Андрогены,
- ΠΓΕ, ΠΓΕ₂,
- Симпатическая система.


Тормозят эритропоэз

- 1.Эстрогены
- 2.Глюкагон
- 3.Ингибирующий фактор при беременности

Деструкция эритроцитов.

- Продолжительность жизни эритроцита в русле ~ 120 дней.
- В этот период развивается физиологическое старение клетки. При старении уменьшается образование АТФ.
- Около 10% эритроцитов разрушаются в норме в сосудистом русле, остальные в печени, селезенке.

Функциональная система поддержания количества эритроцитов в крови

Группы крови.

Открыты австрийским ученым

К. Ландштейнером и чешским врачом

Я. Янским в 1901г 1903г.

- Термином группы крови обозначают иммунобиологические свойства крови,
- на основании которых кровь всех людей, независимо от пола, возраста, расы, географической зоны
- можно разделить на строго определенные группы.

Известно более 300
 групповых факторов крови, которые объединяются в несколько групповых систем.

Система АВО

- Это основная серологическая система,
- определяющая
- совместимость или несовместимость крови
- при ее переливании.

Распределение агглютиногенов и агглютининов

Группа	Агглютиногены	Агглютинины
крови	эритроцитов	плазмы
I	0	αиβ.
II	A	β
III	В	α
IV	A, B	0

- Irp. -40 50%;
- IIrp. -30 40%;
- III rp. 10 20%;
- IVгр. − 5%.

Система резус (Rh)

- Открыта в 1937 1940 гг.
- К. Ландштейнером и
- В. Винером.
- Антигены системы резус находятся в мембране эритроцитов.
- Наиболее важными являются D, C, E.

- Самым активным является антиген D.
- По его наличию или отсутствию определяют резус-принадлежность крови (Rh⁺ или Rh⁻).
- Главной особенностью системы резус является отсутствие в плазме врожденных антител агглютининов.

Резус- конфликт

- Возникает
- 1.при переливании Rh⁻ реципиенту Rh⁺ крови;
- 2. При беременности: если мать Rh⁻ а плод Rh⁺.