Операционные системы Автор Серков В.А.

Управление памятью

Функции ОС по управлению памятью

- 1. Отслеживание свободной и занятой памяти, выделение памяти процессам и освобождение памяти при завершении процессов.
- 2. Вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти не достаточны для размещения в ней всех процессов.
- З. Возвращение процессов в оперативную память, когда в ней освобождается место.
- 4. Настройка адресов программы на конкретную область физической памяти.

Типы адресов

Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.

Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык.

физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды.

Переход от виртуальных адресов к физическим может осуществляться двумя способами.

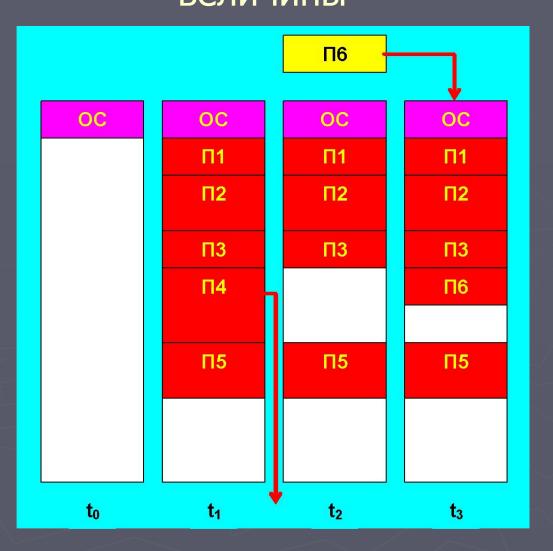

- 1. Замену виртуальных адресов на физические делает специальная системная программа перемещающий загрузчик. Перемещающий загрузчик
- выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.
 - 2. Программа загружается в память в неизмененном виде в виртуальных адресах, при этом операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический.

Методы распределения памяти

Методы распределения памяти		
Без использования	С использованием внешней	
внешней памяти.	памяти.	
Фиксированными	Страничное распределение.	
разделами.		
Динамическими разделами.	Сегментное распределение.	
Перемещаемыми	Сегментно-страничное	
разделами.	распределение.	

Методы распределения памяти без использования дискового пространства

Распределение памяти фиксированными разделами



Распределение памяти фиксированными разделами

Подсистема управления памятью в этом случае выполняет следующие задачи:

- сравнивая размер программы, поступившей на выполнение, и свободных разделов, выбирает подходящий раздел;
- осуществляет загрузку программы и настройку адресов.

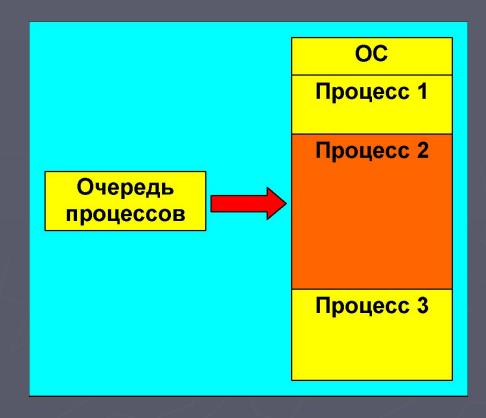
Распределение памяти разделами переменной величины

В.А.Серков "Операционные

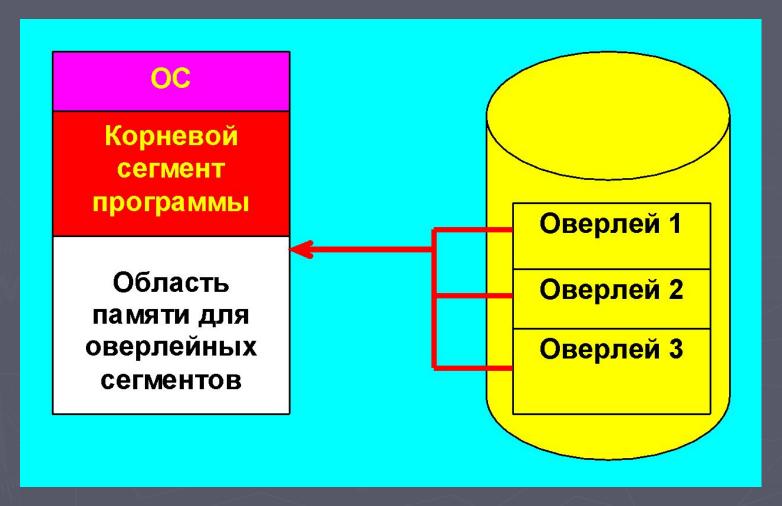
Задачами операционной системы при реализации данного метода управления памятью является:

- ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти;
- при поступлении новой задачи анализ запроса, просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения поступившей задачи;
- загрузка задачи в выделенный ей раздел и корректировка таблиц свободных и занятых областей;
- после завершения задачи корректировка таблиц свободных и занятых областей.

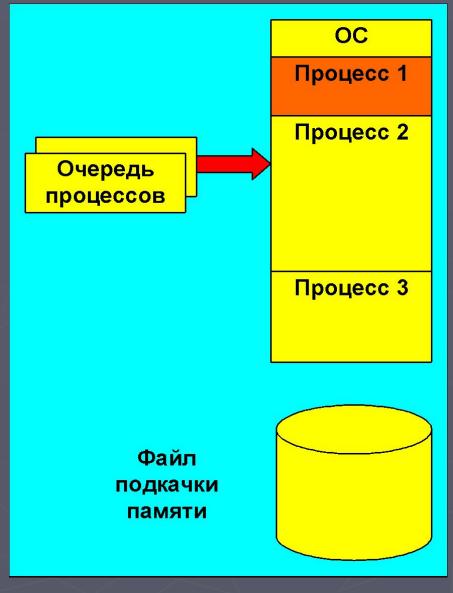
Достоинство: Программный код не перемещается во время выполнения, то есть может быть проведена единовременная настройка адресов посредством использования перемещающего загрузчика.


Недостаток: Фрагментация памяти - это наличие большого числа несмежных участков свободной памяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти.

Перемещаемые разделы



Методы распределения памяти с использованием дискового пространства


Для активизации процесса необходимо программу, реализующую процесс, загрузить в оперативную память компьютера. Поскольку объем памяти ограничен, то может наступить момент, когда для очередного процесса просто не найдется места в оперативной памяти.

Оверлеи

Для решения проблемы памяти операционная система поддерживает файл «подкачки оперативной памяти» на жестком магнитном диске, который вместе с физической памятью образует виртуальную память.

Понятие виртуальной памяти

Виртуальная память - это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся оперативную память.

Виртуальная память решает следующие задачи:

- размещает данные в запоминающих устройствах разного типа, например, часть программы в оперативной памяти, а часть на диске;
- перемещает по мере необходимости данные между запоминающими устройствами разного типа, например, подгружает нужную часть программы с диска в оперативную память;
- преобразует виртуальные адреса в физические.

Страничное распределение

Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного для данной системы размера, называемые виртуальными страницами. В общем случае размер виртуального адресного пространства не является кратным размеру страницы, поэтому последняя страница каждого процесса дополняется фиктивной областью.

Виртуальное адресное пространство процесса

Страница 0
Страница 1
Страница 2
Страница 3
Страница 4

Страница N

Вся оперативная память машины также делится на части такого же размера, называемые физическими страницами (или блоками). Размер страницы обычно выбирается равным степени двойки: 512, 1024 и т.д., это позволяет упростить механизм преобразования адресов.

Физическая	
память	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

При загрузке операционная система создает для каждого процесса информационную структуру - таблицу страниц, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск.

Кроме того, в таблице страниц содержится управляющая информация:

- признак модификации страницы;
- признак невыгружаемости (выгрузка некоторых страниц может быть запрещена);
- признак обращения к странице (используется для подсчета числа обращений за определенный период времени);
- другие данные, формируемые и используемые механизмом виртуальной памяти.

Номер виртуальной страницы	Номер физической страницы	Управляющая информация
	В.А.Серков "Операционные	24

Страница 0

Страница 1

...

Страница N

Таблица страниц П1		
N B.C.	N ф.с.	Упр.Ин.
0	6	
1	ВП	
2	ВП	
3	2	
4	ВП	

память	
	0
	1
С.3 Пр 1	2
	3
С.1 Пр 2	4
	5
С.0 Пр 1	6
	7
	8
	9
С.2 Пр 2	10
	11

Физическая

Виртуальное адр. пространство **П2**

Страница 0

Страница 1

...

Страница К

Таблица страниц П2		
N B.C.	N ф.с.	Упр.Ин.
0	ВП	
1	4	
2	10	
3	ВП	
4	12	

При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы страниц данного процесса.

При каждом обращении к памяти происходит чтение из таблицы страниц информации о виртуальной странице, к которой произошло обращение.

Если данная виртуальная страница находится в оперативной памяти, то выполняется преобразование виртуального адреса в физический.

Если же нужная виртуальная страница в данный момент выгружена на диск, то происходит так называемое страничное прерывание:

- выполняющийся процесс переводится в состояние ожидания;
- активизируется другой процесс из очереди готовых.

Механизм преобразования виртуального адреса в физический при страничной организации памяти

Виртуальный адрес при страничном распределении может быть представлен в виде пары (p, s).

- р номер виртуальной страницы процесса (нумерация страниц начинается с 0);
- s смещение в пределах виртуальной страницы.

Учитывая, что размер страницы равен 2^k, смещение s может быть получено простым отделением k младших разрядов в двоичной записи виртуального адреса. Оставшиеся старшие разряды представляют собой двоичную запись номера страницы р.

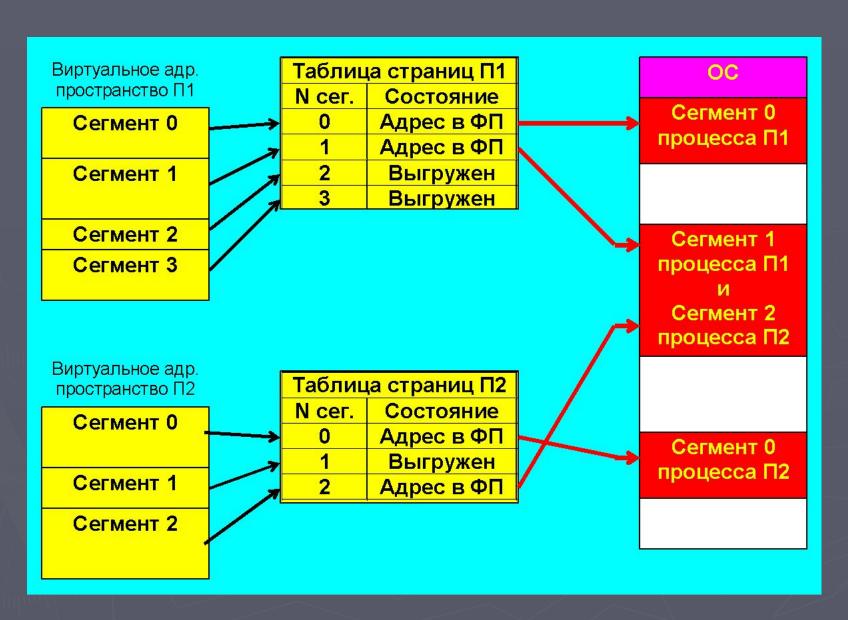
При каждом обращении к оперативной памяти аппаратными средствами выполняются следующие действия:

- 1. На основании:
- начального адреса таблицы страниц (содержимое регистра адреса таблицы страниц);
- номера виртуальной страницы (старшие разряды виртуального адреса);
- длины записи в таблице страниц (системная константа) определяется адрес нужной записи в таблице.
- 2. Из этой записи извлекается номер физической страницы.
- 3. К номеру физической страницы присоединяется смещение (младшие разряды виртуального адреса).

Сегментное распределение

Виртуальное адресное пространство процесса делится на сегменты, размер которых определяется программистом с учетом смыслового значения содержащейся в них информации.

Отдельный сегмент может представлять собой подпрограмму, массив данных и т.п.


Иногда сегментация программы выполняется по умолчанию компилятором.

Сегмент кода программы

Сегмент данных

Сегмент стека

Дополнительный сегмент

В.А.Серков "Операционные

Система с сегментной организацией функционирует аналогично системе со страничной организацией:

- время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти;
- при необходимости освобождения памяти некоторые сегменты выгружаются;
- при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический.
- при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.

Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s).

g - номер сегмента;

s - смещение в сегменте.

Физический адрес получается путем сложения начального физического адреса сегмента, найденного в таблице сегментов по номеру g, и смещения s.

Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.

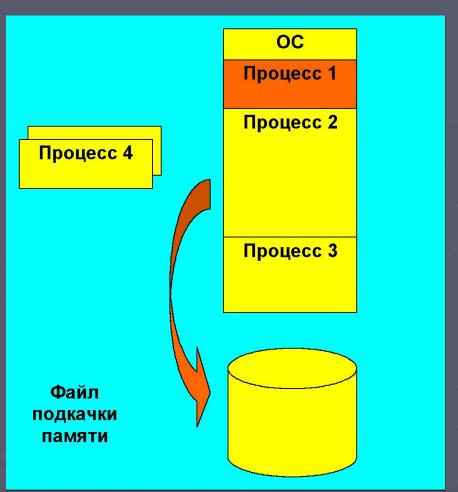
Странично-сегментное распределение

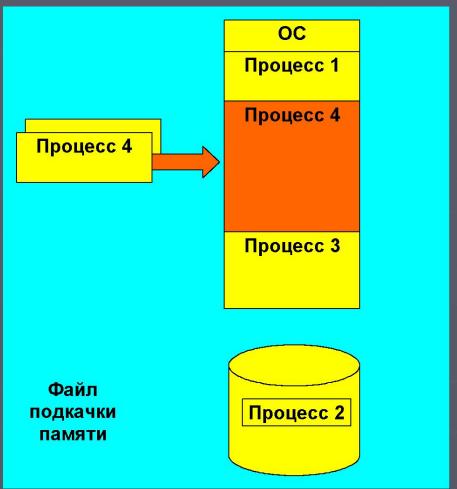
Данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов.

Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента.

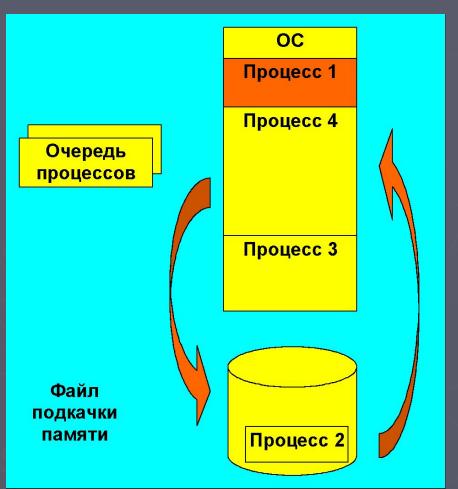
Оперативная память делится на физические страницы.

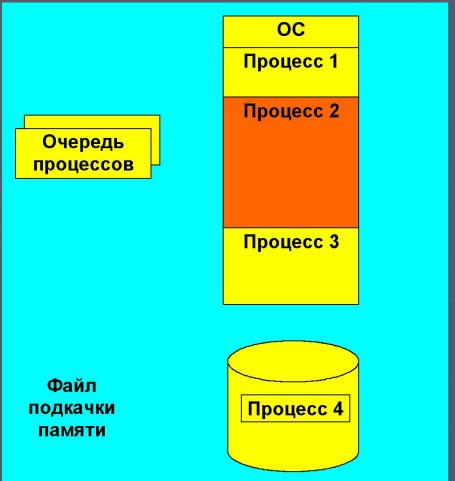
Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть на диске.

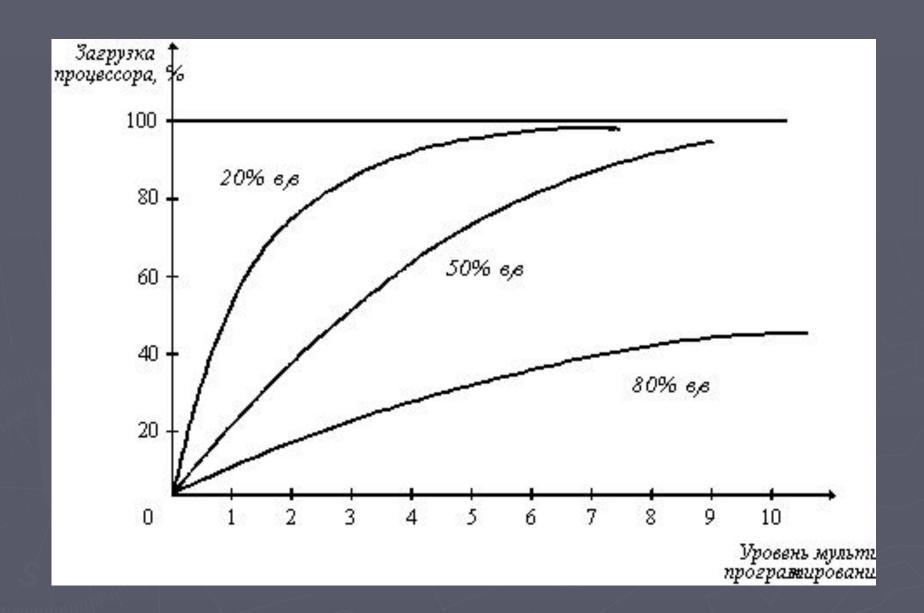

Для каждого сегмента создается своя таблица страниц, структура которой полностью совпадает со структурой таблицы страниц, используемой при страничном распределении.


Для каждого процесса создается таблица сегментов, в которой указываются адреса таблиц страниц для всех сегментов данного процесса.

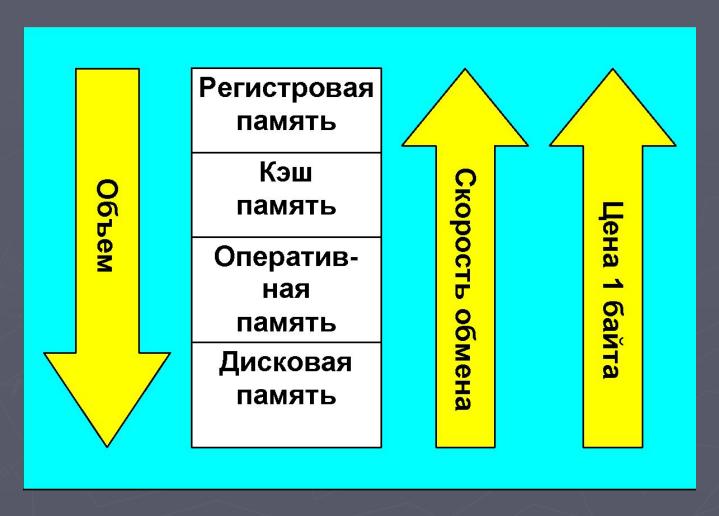
Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс.


Свопинг


При свопинге, в отличие от рассмотренных ранее методов реализации виртуальной памяти, процесс перемещается между памятью и диском целиком, то есть в течение некоторого времени процесс может полностью отсутствовать в оперативной памяти.

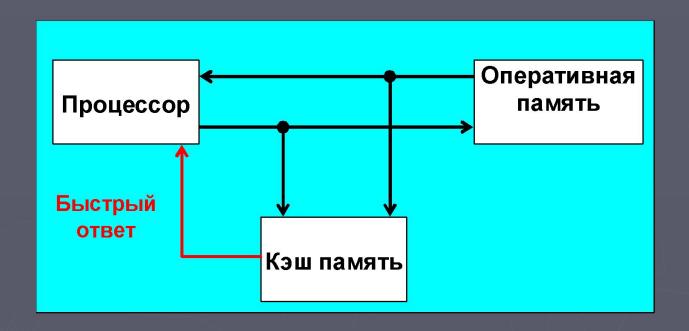


В.А.Серков "Операционные

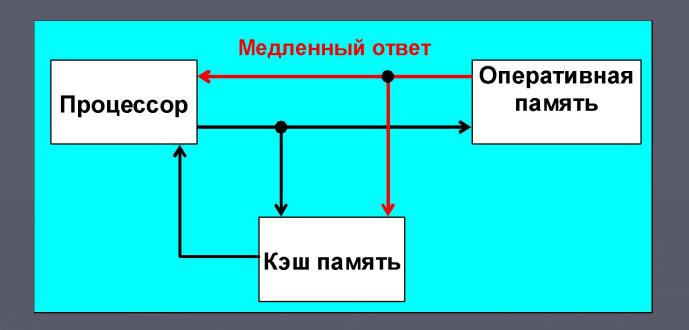


В.А.Серков "Операционные

Соотношение параметров памяти


Кэш-память

Кэш-память - это способ организации совместного функционирования двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который позволяет уменьшить среднее время доступа к данным за счет динамического копирования в "быстрое" ЗУ наиболее часто используемой информации из "медленного" ЗУ.


Механизм кэш-памяти является прозрачным для пользователя, который не должен сообщать никакой информации об интенсивности использования данных и не должен никак участвовать в перемещении данных из ЗУ одного типа в ЗУ другого типа, все это делается автоматически системными средствами.

Просматривается содержимое кэш-памяти с целью определения, не находятся ли нужные данные в кэш-памяти; кэш-память не является адресуемой, поэтому поиск нужных данных осуществляется по содержимому - значению поля "адрес в оперативной памяти", взятому из запроса.

Если данные обнаруживаются в кэш-памяти, то они считываются из нее, и результат передается в процессор.

Если нужных данных нет, то они вместе со своим адресом копируются из оперативной памяти в кэш-память, и результат выполнения запроса передается в процессор.

При копировании данных может оказаться, что в кэш-памяти нет свободного места, тогда выбираются данные, к которым в последний период было меньше всего обращений, для вытеснения из кэш-памяти.

Если вытесняемые данные были модифицированы за время нахождения в кэш-памяти, то они переписываются в оперативную память.

Если же эти данные не были модифицированы, то их место в кэш-памяти объявляется свободным.

Кэш-память

Адрес данных в оперативной	Данные	Управляющая информация	
памяти		Бит модификации	Бит обращения

Пространственная локальность. Если произошло обращение по некоторому адресу, то с высокой степенью вероятности в ближайшее время произойдет обращение к соседним адресам.

Временная локальность. Если произошло обращение по некоторому адресу, то следующее обращение по этому же адресу с большой вероятностью произойдет в ближайшее время.