UDP

NFS (Network File System), TFTP (Trivial File Transfer protocol, RFC-1350), RPC (Remote Procedure Call, RFC-1057) μ
SNMP (Simple Network Management Protocol, RFC-1157).

Хотя протокол UDP не гарантирует доставки, по умолчанию предполагается, что вероятность потери пакета достаточно мала.

UDP и в протоколе Teredo (туннелирование IPv6 для систем NAT) На практике большинство систем работает с UDP-дейтограммами длиной 8192 байта

Новые порты UDP

- Номер Обозначение Назначение порта
- 1397 Audio-activmail Активная звуковая почта
- 1398 Video-activmail Активная видео-почта
- 6000-6063 X11 Система X Window

Стандартные номера портов UDP

- Десятич. Обозначение Описание номер порта порта
- 20 FTP-data
- 21 FTP Протокол FTP
- 25 SMTP
- 43 Whois
- 80 WWW
- 110 POP3

Контрольное суммирование

ARP (Address Resolution Protocol)

8		16	24	31		
Тип оборудования			Тип протокола			
HA-Len PA-Len		Код операции				
Аппаратный адрес отправителя (октеты 03)						
Адрес отправителя (октеты 4,5)			ІР-адрес отправителя (октеты 0,1)			
IP-адрес отправителя (октеты 2,3)			тный адрес адреса	та (0,1)		
Аппаратный адрес адресата (октеты 2,5)						
IP-адрес адресата (октеты 0-3)						
	ип оборудования п РА-L Аппаратный а правителя (октет отправителя (окте	ип оборудования п PA-Len Аппаратный адрес отправителя (октеты 4,5) отправителя (октеты 2,3) Аппаратный адрес	ип оборудования PA-Len Аппаратный адрес отправителя правителя (октеты 4,5) Отправителя (октеты 2,3) Аппаратный адрес адресата	ип оборудования Тип протокола PA-Len Код операции Аппаратный адрес отправителя (октеты 03) правителя (октеты 4,5) IP-адрес отправителя (октеты 2,3) Аппаратный адрес адресата (октеты 2,5)		

RFC-826, std-38

Коды оборудования

• Код Описание типа оборудования

• 1 Ethernet

(10 Мбит/с)

• 3 X.25

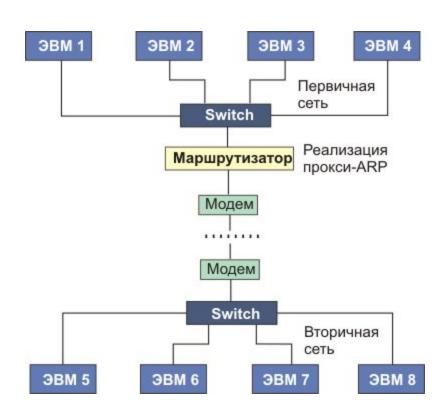
4 Token Ring

• 6 IEEE 802

Коды протокола

• 0806H ARP

• 0800H IP


• 814C SNMP

Возможны самообращенные запросы (gratuitous ARP). При таком запросе инициатор формирует пакет, где в качестве IP используется его собственный адрес. В таком запросе IP-адреса отправителя и получателя совпадают.


Определяется, нет ли в сети объекта, имеющего тот же IPадрес. Если на такой запрос придет отклик, то ЭВМ выдаст на консоль сообщение Dublicate IP address sent from Ethernet address <...>.

В случае смены сетевой карты производится корректировка записи в ARP-таблицах ЭВМ, которые содержали старый MAC-адрес инициатора.

ARP-прокси

Формат сообщения запроса маршрутизатора (Neighbor Discovery - RFC-4861)

IP-поля (IP-заголовок пакета):

Адрес отправителя IP-адрес, приписанный отправляющему интерфейсу, или неспецифицированный адрес, если адрес отправляющему интерфейсу не присвоен.

Адрес получателя Обычно мультикаст адрес, соответствующий всем маршрутизаторам

Поля ІСМР:

Тип=133

Код=0

ND (Neighbor Discovery - RFC-4861)

- Выявление маршрутизатора: алгоритм локализации маршрутизаторов, подключенных к каналу.
- Определение префикса: алгоритм детектирования списка адресных префиксов, которые определяют список объектов, подключенных к каналу. Узлы используют префиксы, чтобы разделить объекты, доступные непосредственно, от доступных через маршрутизатор.

- Определение параметров: механизм определения узлами параметров канала (такой как МТU канала) или параметры Интернет (такие как максимальное число шагов), которые вставляются в исходящие пакеты.
- Автоконфигурация адреса: определяет механизмы, необходимые для конфигурации адресов.
- *Выявление адреса:* задает алгоритм определения МАСадреса соседа для заданного IP-адреса.
- Определение следующего адреса: маршрутизатор или само место назначения.
- Детектирование недостижимости соседа: Определяет механизм определения недостижимости соседа. Для соседей, используемых в качестве маршрутизаторов, может использоваться альтернативный маршрутизатор по-умолчанию. Как для соседей, так и для маршрутизатора

- Детектирование адресов-дубликатов: процедура определения узлом действителен ли используемый им адрес другого узла.
- *Перенаправление:* механизм информирования маршрутизатором машины о лучшем следующем шаге для конкретного места назначения.
- В протоколе ND определены пять разных типов ICMP-пакетов: два сообщения запроса и анонсирования маршрутизатора, два сообщения запроса и анонсирования соседа и сообщение переадресации

Формат сообщения анонсирования маршрутизатора

T	8		Von	Контрольная сумма
Тип Тек. предел шагов	М	0	Код Резерв	Время жизни маршрутизатора
			Достижи	I імое время
			Таймер ре	трансмиссии
Опции	Ī	Ī		

IP-поля (IP-заголовок пакета):

Адрес отправителя Должен быть локальным МАС-адресом,

присвоенным интерфейсу, который посылает сообщение

Адрес получателя Обычно адрес отправителя вызывающего

запрос маршрутизатора или мультикаст-адрес,

соответствующий всем маршрутизаторам

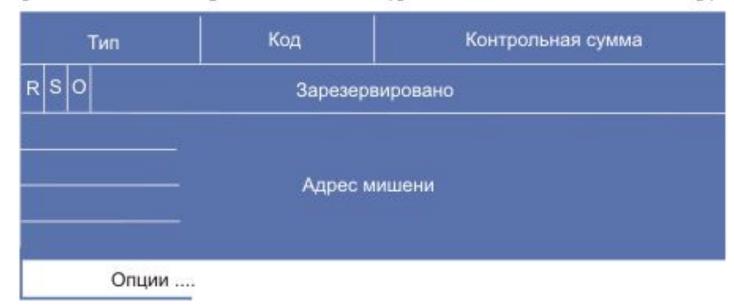
Поля ІСМР:

Тип=134

Код=0

Формат сообщения запроса соседа

IP поля (IP-заголовок пакета)


Адрес отправителя Либо адрес, приписанный интерфейсу, откуда пришло это сообщение

Адрес места назначения Либо мультикаст-адрес, соответствующий месту назначения, либо непосредственно адрес мишени

Поля ІСМР:

Тип=135 Код=0

Формат сообщения анонсирования соседа

IP поля (IP-заголовок пакета)

Адрес отправителя

Адрес присвоенный интерфейсу,

через который послано сообщение

анонсирования

Адрес места назначения Для запрошенных анонсирований

адрес отправителя запроса или,

если адресат

запроса

неспецифицирован, мультикаст-

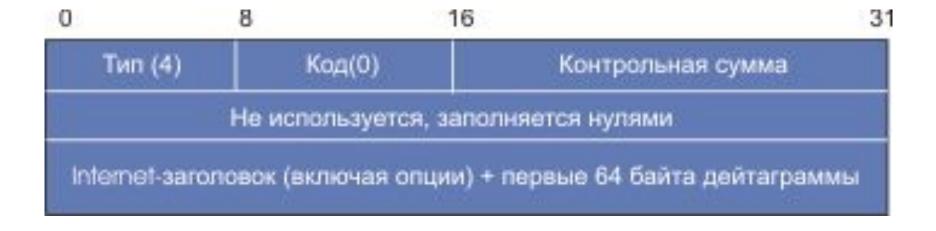
адрес всех узлов

- *Поля ICMP (*Формат сообщения анонсирования соседа): Тип=136 Код=0
- *R* флаг маршрутизатора. Если R=1, отправителем является маршрутизатор. R-бит используется при детектировании недостижимости соседа, чтобы детектировать маршрутизатор, который заменяет машину.
- **S** флаг запроса. Когда S=1, это означает, что анонсирование было послано в ответ на запрос соседа со стороны адреса места назначения. S-бит используется в качестве подтверждения недоступности соседа. Бит не следует устанавливать в мультикастных уведомлениях или в случае неспровоцированного уникастного анонсирования.
- О флаг перезаписи. Когда О=1, это означает, что анонсирование должно быть переписано существующей записью в кэше. Когда О=0, анонсирование не обновляет кэшированный МАС-адрес

ICMP (ping)

Поля *идентификатор* (обычно это идентификатор процесса) и *номер по порядку* (увеличивается на 1 при посылке каждого пакета)

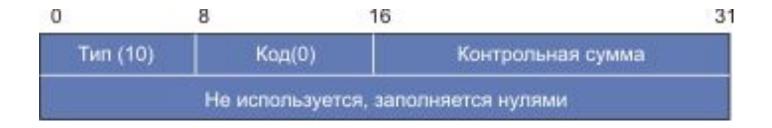
Так как в пакете ICMP нет поля порт, то при запуске нескольких процессов PING одновременно может возникнуть проблема с тем какому из процессов следует передать тот или иной отклик. Для преодоления этой неопределенности следует использовать уникальные значения полей идентификатор


Схема вложения ICMPпакетов в Ethernet-кадр

Адресат не достижим

8	16 3
Код	Контрольная сумма
используется, иняется нулями	MTU на следующем шаге
оловок (включая	опции) + первые 64 байта дейтаграммы
	используется, пняется нулями

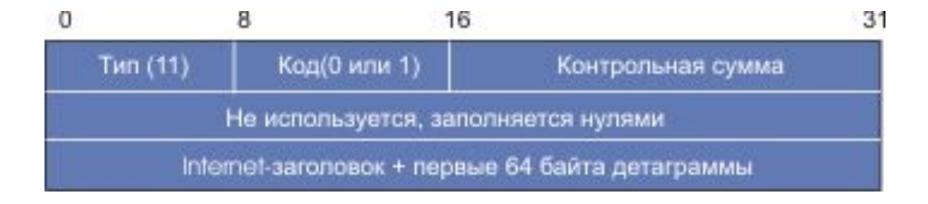
Quench


Формат ICMP-запроса переадресации

Формат ICMP-сообщений об имеющихся маршрутах

8 16	· ·	31
Код(0)	Контрольная сумма	
Длина адреса (2)	Время жизни	
Адрес маршрути	затора [1]	
Уровень приорі	итета [1]	
Адрес маршрути	затора [2]	
Уровень приор	итета [2]	
	Код(0) Длина адреса (2) Адрес маршрути Уровень приори Адрес маршрути	Код(0) Контрольная сумма

Формат запроса маршрутной информации



Формат запроса (отклика) маски субсети

тип=17 - это запрос, а тип=18 - отклик

TTL=0

Код=0 *при передаче

* при сборке (случай фрагментации).

Запрос временной метки

0 0	100	0
Тип (13 или 14)	Код(0)	Контрольная сумма
Идентифи	катор	Номер по порядку
	Исходная врем	енная метка
	Временная ме	тка на входе
	Временная мет	ка на выходе

Поле *тип*=**13** указывает на то, что это запрос, а тип=**14** - на то, что это отклик Поле идентификатор и номер по порядку используются отправителем для связи запроса и отклика. Поле *исходная временная метка* заполняется отправителем непосредственно перед отправкой пакета. Поле *временная метка на входе* заполняется маршрутизатором при получении этого

TOVOTO O PROMOHUSE MOMES HE OLIVADO

Конфликт параметров

Поле *указатель* отмечает октет дейтограммы, который создал проблему. *Код*=1 используется для сообщения о том, что отсутствует требуемая опция (например, опция безопасности при конфиденциальных обменах), поле *указатель* при значении поля *код*=1 не используется

ping -q mcmurdo-gw.mcmurdo.gov

- 193.124.224.190 ??? имя для GW ИТЭФ пока не придумано
- 193.124.137.13 MSU-Tower.Moscow.RU.Radio-MSU.net Вперед, в космос hop 3: 193.124.137.9 NPI-MSU.Moscow.RU.Radio-MSU.net Через спутник "Радуга"
- 193.124.137.6 DESY.Hamburg.DE.Radio-MSU.net пакеты совершили посадку в ДЕЗИ
- 188.1.133.56 dante.WiN-IP.DFN.DE
- 93.172.4.12 duesseldorf2.empb.net
- 193.172.4.8 amsterdam6.empb.net
- 193.172.12.6 Amsterdam1.dante.net Пересекаем Атлантический океан 194.41.0.42
 New-York1.dante.net вступили на землю США
- 192.103.63.5 en-0.cnss35.New-York.t3.ans.net
- 140.222.32.222 mf-0.cnss32.New-York.t3.ans.net
- 140.222.56.2 t3-1.cnss56.Washington-DC.t3.ans.net
- 140.222.145.1 t3-0.enss145.t3.ans.net
- 192.203.229.243 SURA2.NSN.NASA.GOV Снова в космос
- 128.161.166.1 GSFC8.NSN.NASA.GOV но теперь через американский 128.161.232.1 GSFC12.NSN.NASA.GOV спутник <>
- 128.161.1.1 ARC1NEW.NSN.NASA.GOV
- 192.203.230.2 ARC1.NSN.NASA.GOV 192.100.12.2 ARC2.NSN.NASA.GOV

DDoS

К концу 2009 года предельные потоки DDoS-атак достигли 49 Гбит/с, а в 2014 – 200 Гбит/с!