ЗМІНА МАГНІТНИХ ХАРАКТЕРИСТИК ПРИ ОПРОМІНЕННІ ЗРАЗКА СВІТЛОМ

Фотомагнетизм Rb_{0.88}Mn[Fe(CN)₆]_{0.96}·0.5H₂O.

H. Tokoro, T. Matsuda, T. Nuida, Y. Moritomo, K. Ohoyama, E. D. L. Dangui, K. Boukheddaden, S. Ohkoshi *Chem. Mater.* **2008**, *20*, 423

€ 2 фази:

- I Mn^{II}-Fe^{III} високотемпературна фаза (HT) антиферомагнітна фаза
- II Мп^{III}-Fe^{II} низькотемпературна фаза (LT) феромагнітная фаза

Электронні спектри: Фаза LT: метал-метальний перенос заряду (Fe^{II} → Mn^{III}) при 420–540 нм

Фаза НТ: ліганд-метальний перенос заряду (CN → Fe^{III}) в [Fe^{III}(CN)₆]³⁻ при 410 нм

Перехід фазы LT в HT при опроміненні і зворотній перехід Контроль по змін IЧ-спектру при опроміненні

При опроміненні світлом при 532 нм LT фаза переходить в фотоіндуковану фазу (PI), подібну HT фазі, и відбувається розмагнічування

Опромінення PI фази при 410 нм визкликає оборотній фазовий перехід

- намагніченіств після нагрівання до 180 К 💷.

ЗМІНА КУТУ ОБЕРТАННЯ ПОЛЯРИЗОВАНОГО СВІТЛА ЗАВДЯКИ МАГНІТНОМУ ПЕРЕХОДУ

Синтез і будова координаційного полімеру [N(CH₃)(n-C₃H₇)₂((S)-s-C₄H₉)][(Λ)-Mn(Δ)-Cr(ox)₃]

 $[\text{NCH}_{3}(\text{C}_{3}\text{H}_{7})_{2}((S)-s-\text{C}_{4}\text{H}_{9})]^{+} + \text{Mn}^{2+} + (rac) - [\text{Cr}(\text{ox})_{3}]^{3-}$ = [NCH_{3}(C_{3}\text{H}_{7})_{2}((S)-s-\text{C}_{4}\text{H}_{9})][(\Lambda) - \text{Mn}(\Delta) - \text{Cr}(\text{ox})_{3}] \mathbf{1} [NCH_{3}(C_{3}\text{H}_{7})_{2}((R)-s-\text{C}_{4}\text{H}_{9})]^{+} + \text{Mn}^{2+} + (rac) - [\text{Cr}(\text{ox})_{3}]^{3-} = [NCH_{3}(C_{3}\text{H}_{7})_{2}((R)-s-\text{C}_{4}\text{H}_{9})][(\Delta) - \text{Mn}(\Lambda) - \text{Cr}(\text{ox})_{3}] \mathbf{2}

C. Train, R.Gheorghe, V. Krstic,
L.-M. Chamoreau,
N. S. Ovanesyan,
G. L. J. A. Rikken, M. Gruselle, M. Verdaguer, *Nature Materials*, 2008, 7, 729

СПЕКТРИ КРУГОВОГО ДИХРОЇЗМУ ЕНАНТІОМЕРІВ

Залежність магнітного моменту від температури для ізомеру $[N(CH_3)(n-C_3H_7)_2((S)-s-C_4H_9)][(\Lambda)-Mn(\Delta)-Cr(ox)_3]$

Збільшення магнетохірального дихроїзму для $[N(CH_3)(n-C_3H_7)_2((S)-s-C_4H_9)][(\Lambda)-Mn(\Delta)-Cr(ox)_3]$ при 615 нм (блакитна крива) і намагніченость при охолодженні в магнітному полі для цієї ж сполуки (червона крива)

P. Gerbier, N.Domingo, J. Gomez-Segura, D. Ruiz-Molina, D. B. Amabilino, J. Tejada, B. E. Williamson, J. Veciana, *J. Mater. Chem.*, 2004, 14, 2455

Магнітна сприйнятливість Mn₁₂O₁₂(ClMeCHCO₂)₁₆ (сполуки 1) в залежності від температури при різних частотах. Заштриховані символи - сигнал в фазі, порожні - поза фазою

Спектр кругового дихроїзму Mn₁₂O₁₂(ClMeCHCO₂)₁₆ (сполуки **1**) (S - суцільна крива, R - пунктир)

Спектр магнетокругового дихроїзму $Mn_{12}O_{12}(CIMeCHCO_2)_{16}$ (сполуки 1) в склі дихлорметан - толуол (S - суцільна крива, R - пунктир) в полі і після видалення поля T = 1,65 К

Гістерезис магнетокругового дихроїзму $Mn_{12}O_{12}(ClMeCHCO_2)_{16}$ (сполуки 1) (S-ізомер) в склі дихлорметан - толуол T = 1,65 K

Магнетокруговий дихроїзм в рентгенівському діапазоні

M. Mannini, F. Pineider, P. Sainctavit, L. Joly, A. Fraile-Rodriguez, M.-A. Arrio, C. Cartier dit Moulin, W. Wernsdorfer, A. Cornia, D. Gatteschi, R. Sessoli *Adv. Mater.* 2009, 21, 167–171

Досліджувані зразки:

плівки, отримані випаровуванням розчину комплексу в CH_2Cl_2 на поверхні Au(111). Товщина плівок - сотні нм

Залежність намагніченості від поля для Fe₄

Магнетохіральний дихроїзм в рентгенівському діапазоні

$[Fe_4(L)_2(dpm)_6]$

Залежності сигналу магнетокругового дихроїзму Fe₄ (в рентгенівському діапазоні, за E = 709.2 eV) від напруженості поля. Прямі лінії - намагніченості масивних зразків (порівняння форми кивої). v = 2mT/c.

Магнетохіральний дихроїзм в рентгенівському діапазоні

$[Fe_4(L)_2(dpm)_6]$

Залежності сигналів дихроїзму від часу. Зразки намагнічували в сильному додатньому магнітному полі (біля 2 Т), після цього поле швидко зменшували до відємного значення (-0.25 Т) і вимірювали залежність сигналу дихроїзму від часу. Симуляція - експоненційна крива.

Оптична бістабільність, індукована магнітним полем

M. R. Cheesman, V. S. Oganesyan, R. Sessoli, D. Gatteschi, A. J. Thomson, *Chem. Commun.*, 1997, 1676

Молекула-магніт $Mn_{12}O_{12}(OOCMe)_{16}(H_2O)_4$ в ДМФ-МеСN

а) Спектр поглинання Mn₁₂ за кімнатної температури;

(*b*) спектр магнетокругового дихроїзму Mn_{12} в замороженому склі (ДМФ–МеСN) за T = 1.70 K і H = 5 T (——), після чого поле знижено до нуля (……), після чого накладене поле H = -5 T (–––), після чого поле знижено до нуля (…–.).

Однородне магнітне поле накладене паралельно напрямку пучка світла.

Оптична бістабільність, індукована магнітним полем

Молекула-магніт Мп₁₂**О**₁₂**(ООСМе)**₁₆**(H**₂**О)**₄ в склі ДМФ-МеСN

Сигнал магнеткругового дихроїзму в діапазоні від -2.1 до +2.1 Т за 474 нм

Кожну точку вимірювали шляхом зміни магнітного поля на 0,1-0,2 Т, з періодом очікування 20-30 с. Після такогого періоду сигнал не змінювався.