МУЛЬТИФУНКЦЮНАЛЬНІ БІОМОЛЕКУЛИ

Мультифункціональні біомолекули

Молекули, що змінюють хімічні властивості під зовнішнім фізичним впливом

Молекули, що використовуються для надання нових властивостей іншим системам

Фотохімічна активація ферментативних реакцій

I. Willner, B. Basnar, B. Willner, FEBS Journal 2007, 274, 302

LDH - лактат дегідрогеназа NR - нітрат редуктаза

NO2⁻ Генерування фотострумів шляхом фотохімічноіндукованої активапції ензиматичних каскадів наночастинками CdS.

(A) Фотохімічна активація окиснення лактату, що перебігає за участю цитохрому с у присутності LDH.

(В) Фотохімічна активація відновлення нітрату, що перебігає за участю цитохрому с у присутності NR.
(С) Фотоструми, генеровані в біокаталітичних каскадах за різних концентрацій субстрату (лактат/нітрат).

Зміна активності фермента під дією світла

P. K. Agarwal, C. Schultz, A. Kalivretenos, B. Ghosh, S. E. Broedel, Jr.J. Phys. Chem. Lett. 2012, 3, 1142

Зміна активності фермента під дією світла

Активність фермента у фотоактивованому стані (при освітленні) і незмінному стані (в темноті). Активація ферменту досягається одночасним освітленням ферменту з азобензеновим містком УФ і блакитним світлом.

Активність модифікованого фермента вимірювали в суміші 1 µг ферменту, 50 нмоль п-нітрофенілбутирату (PNPB) (250 µM) в 50 мМ Tris-Cl, pH 8.0.

Фотопереключення іонотропного рецептору глутамату

P. Gorostiza, M. Volgraf, R. Numano, S. Szobota, D. Trauner, E. Y. Isacoff, *PNAS*, 2007, 104, 10865

Фотопереключення іонотропного рецептору глутамату

P. Gorostiza, M. Volgraf, R. Numano, S. Szobota, D. Trauner, E. Y. Isacoff, *PNAS*, 2007, 104, 10865

Шляхи зєднання MAG-1 до iGluR6-L439C:

(*a*) перехід в транс-конформацію при освітленні світлом з довжиною хвилі 500 нм

б) заповнення сайту звязування MAG-1 з використанням високої концентрації глутамату

LBD = сайт звязування ліганду (ligand binding site)

Фотоактивний протеїн

J. Bredenbeck, J. Helbing, A. Sieg, T. Schrader, W. Zinth, C. Renner, R. Behrendt, L. Moroder, J. Wachtveitl, P. Hamm *PNAS*, 2003, 100, 6452.

Фотоактивний протеїн

J. Bredenbeck, J. Helbing, A. Sieg, T. Schrader, W. Zinth, C. Renner, R. Behrendt, L. Moroder, J. Wachtveitl, P. Hamm *PNAS*, 2003, 100, 6452.

Y. Zhang, F.Lu, K.G. Yager, D. van der Lelie, O. Gang, *Nature Nanotechnology*, 2013, DOI: 10.1038/NNANO.2013.209

Спосіб функціоналізації наночастинок за допомогою ДНК

f – кількість ДНК на поверхні

STV – стрептавідін (протеїн, що має високу спорідненість до біотину); NHSS - N-гідроксисульфосукцинімід; EDC, 1-етил-3-(3-диметиламінопропіл)карбодіїмід.

Формування асоціатів через взаємодію імобілізованих ДНК напряму або через місткову ДНК

Число у позначенні – кількість азотвмісних основ

Метод дослідження

Наночастинки Pd/Au

Малокутове розсіювання рентгенівських променів (SAXS). Наявність максимумів є ознакою утворення впорядкованої структури. Шляхом симуляції спектру можна встановити тип кристалічної супергратки

Зборка систем різних наночастинок за допомогою ДНК Самозбірка супер-структур на основі різних наночастинок

Агрегати наночастинок Fe₂O₃. Фіт – слабко-впорякована гранецентрована гратка, позначена як "Фаза F"

Перетворення Фази-F на бінарну фазу Fe_2O_3 -Au (Фаза-D) при додаванні наночастинок Au до агрегатів наночастинок Fe_2O_3 .

⁶⁵ Серія S(q) для систем, в яких довжина ДНК зменшується від 145 до 30 нм.
⁵⁶ Коротші фрагменти ДНК сприяють утворенню більшої кількості фази D (Nj 45 (FeO_Au15_15) і 30 (FeO_Au0_15)), а довші ведуть до утворення суміші фаз (Nj145 (FeO_Au65_65) і
⁶⁰ 0.12 70(FeO_Au35_35)).

Залежність швидкості процесу перетворення Фази-F на Фазу-D від довжини ДНК.

Візуалізація виділення Ca²⁺ за допомогою зеленого флуоресцентного протеїну

Q. Chen, J. Cichon, W. Wang, L. Qiu, S.-J. R. Lee, N. R. Campbell, N. DeStefino, M. J. Goard, Z. Fu, R. Yasuda, L. L. Looger, B. R. Arenkiel, W.-B. Gan, G. Feng *Neuron* 2012, 76, 297

Комунікація нейронів супроводжується виділенням або поглинанням кальцію. За допомогою модифікованого зеленого флуоресцентного протеїну, що чутливий до кальцію, можна візуалізувати активність неронів в режимі реального часу.

