

Патофизиология системного кровообращения

Лекция для студентов 3-го курса Специальность «педиатрия» Кафедра патофизиологии КрасГМА • <u>Цель лекции</u>: Рассмотреть этиологию и патогенез типовых форм патологии сердечной деятельности, механизмы компенсации и основные проявления коронарной и сердечной недостаточности.

Содержание лекции:

- Причины понижения перфузионного давления в миокарде;
- Основные факторы развития ишемии миокарда;
- Причинные факторы коронарной недостаточности;
- Механизмы повреждения миокарда при ишемии;
- Инфаркт миокарда: гибернация и станнинг миокарда;
- Механизмы реперфузионного повреждения клеток миокарда;
- Саногенетические механизмы при КН;
- Сердечная недостаточность: виды и патогенез;
- Систолическая и диастолическая дисфункция желудочков;
- Кардинальные признаки острой КН на ЭКГ.

Особенности коронарного кровотока

- Высокий уровень экстракции О2 в капиллярах сердца –70-75% (в мозге-25%, в почках-10%);
- Высокий базальный тонус коронарных сосудов, который в состоянии покоя обеспечивает кровоток на уровне 200-300 мл/мин (5% МОС);
- Высокий резерв коронарного кровообращения (при физической нагрузке интенсивность коронарного кровотока может ↑ в 5-6 раз);
- Фазовый характер коронарного кровотока (в период систолы он резко↓-до15% от общего, а при диастоле ↑(до 85%);
- Подчиненность коронарного кровотока метаболическим потребностям сердца и относительная независимость его от нервных регуляторных влияний (при патологии ↑ чувствительность к нервным импульсам);
- Исключительно высокая чувствительность коронарных сосудов к ↓ напряжения кислорода в крови;
- Недостаточное развитие коллатеральных сосудов в миокарде.

Причины понижения перфузионного давления в миокарде

- Понижение давления в аорте;
- Окклюзия коронарных сосудов;
- Достижение предела вазодилатации коронарных сосудов;
- Синдром обкрадывания (вследствие дилатации коронарных сосудов в здоровых участках миокарда ↓ перфузионное давление в зоне ишемии миокарда).

Регуляция коронарного кровотока

- Миогенная ауторегуляция, обеспечивающая постоянство коронарного кровотока и его относительную независимость от изменений АД (эффект Бейлиса: при растяжении гл-мышечных клеток сосудов ↑ сила их сокращения);
- Метаболическая регуляция, подчиняющая коронарное кровообращение метаболическим потребностям сердца (вазодилататоры:NO, аденозин, лактат, ионы водорода, ПГЕ, простациклин (ПГІ₂);
- Нервная регуляция. Симпатические влияния → α-AP и β-AP. При этом возбуждение β₂-AP, преобладающих в коронарных сосудах, вызывает их расширение, возбуждение α₁-AP, расположенных преимущественно в субэпикардиальных сосудах, вызывает их спазм. Возбуждение холинорецепторов → расширение коронарных сосудов. Субстанция P и нейротензин оказывают сосудосуживающее действие.

Основные факторы развития ишемии миокарда

- 1. Обтурационный механизм, причины:
- Стенозирующий атеросклероз (в 90%случаев);
- Тромбоз коронарных артерий (чаще следствие атеросклероза);
- Эмболия коронарных артерий;
- ↓ просвета коронарных сосудов вследствие ↑ толщины их стенок при отеке (коронариите), гипертрофии гладкомышечных клеток сосудов, артериолосклерозе;
- 2. Ангиоспастический механизм, причины:
- Возбуждение α₁-АР на фоне блокады β₂-АР;
- ↑ синтеза вазоконстрикторов (эндотелина, ангиотензина, тромбоксана А₂) на фоне ↓количества вазодилататоров;
- 3. Компрессионный механизм (рубцы, опухоль).

Коронарная недостаточность

- Это типовая форма патологии сердца, характеризующаяся превышением потребности миокарда в кислороде и субстратах метаболизма над их притоком по коронарным артериям, а также нарушением оттока от миокарда БАВ, метаболитов и ионов.
- <u>Виды КН</u>: *обратимая* (транзиторная) и необратимая.
- обратимые нарушения клинически проявляются различными вариантами стенокардии стабильного или нестабильного течения.
- Необратимое прекращение или длительное значительное ↓ притока крови по коронарной артерии в каком-либо регионе сердца завершается, как правило, его гибелью инфарктом. Если это не приводит к смерти пациента, то погибший участок сердца замещается соединительной тканью.
- !! Особо выделены состояния после реперфузии (реваскуляризации) миокарда у пациентов с хронической КН.

Причинные факторы КН

- 1. **Коронарогенные** вызывающие уменьшение или полное закрытие просвета венечных артерий и, следовательно, уменьшение притока артериальной крови к миокарду. Они обусловливают развитие так называемой абсолютной КН (вызвана «абсолютным» понижением доставки крови к миокарду).
- 2. Некоронарогенные обусловливающие существенное повышение расхода миокардом кислорода и субстратов метаболизма в сравнении с уровнем их притока. КН, вызываемую ими, обозначают как относительную (может развиваться и при нормальном уровне притока крови к миокарду).

Коронарогенные факторы КН

- Атеросклеротическое поражение коронарных артерий. При 50 % сужении просвета артерии уменьшение ее внешнего диаметра только на 9–10 % (при сокращении мышечных волокон) вызывает окклюзию сосуда и прекращение притока крови к миокарду.
- Агрегация форменных элементов крови (эритроцитов и тромбоцитов) и образование тромбов в венечных артериях сердца. Этому способствуют атеросклеротические изменения стенки сосудов.
- Спазм коронарных артерий. Длительное и значительное сужение просвета коронарной артерии это результат действия ряда взаимозависимых факторов: а) сокращение мышц коронарных артерий под влиянием катехоламинов, тромбоксана А₂, простагландинов; б) ↓ внутреннего диаметра артерий в результате утолщения ее стенки; в) сужение или закрытие сосуда тромбом.

Некоронарогенные причины КН

- 1. Повышение в крови и миокарде уровня катехоламинов (при стрессе, феохромоцитоме и т.д.). Избыток катехоламинов в миокарде обусловливает развитие кардиотоксического эффекта (чрезмерное ↑ расхода миокардом О2 и субстратов метаболизма, ↓ к.п.д. энергопродуцирующих процессов, повреждение мембран и ферментов свободными радикалами и продуктами ПОЛ, образование которых стимулируют катехоламины и т.д.).
- 2. Значительное возрастание работы сердца. Это может быть следствием чрезмерной физической нагрузки, длительной тахикардии, острой АГ и т.д. Эти причины приводят, как правило, к активации симпатоадреналовой системы.

Механизмы повреждения миокарда при КН

1. Расстройство процессов энергообеспечения кардиоцитов.

- 2. Повреждение мембранного аппарата и ферментных систем кардиоцитов.
- 3. Дисбаланс ионов и жидкости.
- 4. Расстройство механизмов регуляции сердца

Инфаркт миокарда

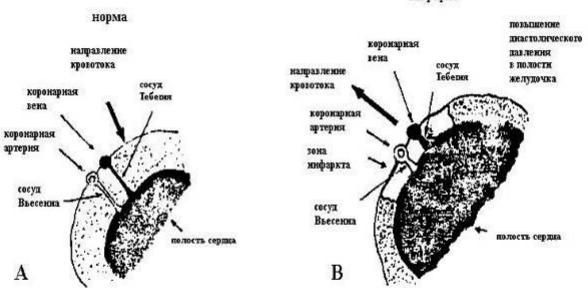
- Это патологическое состояние сердца и всего организма, которое развивается вследствие прекращения или резкого падения объемной скорости кровотока в определенных сегментах стенок сердечных камер в результате обтурации венечных артерий атеросклеротическими бляшками и тромбами.
- В клинико-патофизиологическом отношении <u>ИМ прежде всего характеризует асинхронное сокращение сегментов стенок желудочка, пораженного циркуляторной гипоксией. Острое ↓ выброса крови левым желудочком в аорту происходит не столько вследствие ишемического цитолиза кардиомиоцитов, сколько в результате обусловленного циркуляторной гипоксией ↓ сократительной способности клеток миокарда.
 </u>

Стадии морфопатогенеза ИМ

- 1. Разрастание атероматозной бляшки.
- 2. Патологический спазм пораженного атеросклерозом участка сосудистой стенки.
- 3. Разрыв или повреждение сосудистой стенки в области атероматозной бляшки вследствие: а) резкого ↑ массы бляшки; б) дегенерации и гибели эндотелиоцитов из-за инфильтрации макрофагами сосудистой стенки и секреции ими протеолитических ферментов; в) спазма артерии, который повреждает эндотелий в области бляшки.
- 4. Тромбоз
- 5. Спонтанный лизис тромба
- 6. Ретромбоз, распространение тромба по сосуду и тромбоэмболия. У 50 % больных ИМ полная обтурация просвета сосуда происходит быстро. У других прогрессирование окклюзии вследствие тромбоза чередуется с разрушением тромба под влиянием спонтанного лизиса и кровотока. В результате у таких пациентов нет внезапного появления всех симптомов инфаркта

Гибернация миокарда

- Циркуляторная гипоксия сердца индуцирует на органном уровне защитную реакцию гибернирующего миокарда (гибернации сердца).
- Под гибернирующим миокардом понимают состояние сердца, которое характеризует угнетение насосной функции в условиях покоя без цитолиза кардиомиоцитов. Состояние гибернирующего миокарда это результат защитной реакции, направленной на снижение высокого соотношения между силой сокращения гипоксичного участка сердечной мышцы и его кровоснабжением. В гибернация задерживает цитолиз клеток сердца, обусловленный гипоэргизмом.
- Гибернация сохраняет кардиомиоциты таким образом, что возобновление кровотока в течение недели после возникновения ишемии подвергает обратному развитию гипо- и акинезию сегментов стенки желудочков.


Станнинг миокарда

- Станнинг (англ. stunning оглушение, ошеломление) миокарда — это состояние вследствие ↓ насосной функции сердца в результате его циркуляторной гипоксии, которое не подвергается обратному развитию, несмотря на восстановление объемной скорости кровотока в испытавших циркуляторную гипоксию сегментах стенок сердечных камер.
- Существенное отличие станнинга от гибернации в том, что восстановление доставки клеткам сердца кислорода и энергопластических субстратов не устраняет угнетения насосной функции сердца. В основе развития станнинга лежат чрезмерное образование свободных КР, нарушения миграции кальция через клеточные мембраны и низкая эффективность окислительно-восстановительных процессов(↓АТФ). Состояние станнинга миокарда может длиться дни или месяцы.

Саногенетические механизмы при КН

- 1. Усиление коллатерального кровообращения. Кровоснабжение инфарцированной области может быть улучшено, во-первых, за счет расширения других ветвей той коронарной артерии, в одной из ветвей которой нарушена проходимость; во-вторых, за счет расширения других коронарных артерий; в-третьих, при ослаблении сократительной способности миокарда и возникающего при этом остаточного систолического объема крови в полости желудочков, а также ↑внутриполостного диастолического давления, когда кровь по системе сосудов Вьессена— Тебезия может идти ретроградно — из полости сердца в венечные сосуды, что усиливает васкуляризацию ишемизированного участка.
- 2. Усиление парасимпатических влияний на миокард понижает его потребность в кислороде. Это понижение «перекрывает» коронаросуживающий эффект парасимпатических медиаторов.

инфаркт

Кровоток по сосудам Вьесенна-Тебезия в норме (А) и при инфаркте миокарда (В)

Механизмы дополнительного реперфузионного

повреждения клеток миокарда

На ранних этапах реперфузии возможно пролонгирование и даже потенциирование повреждения реперфузируемого участка сердца. В связи с этим КН чаще всего является совокупностью двух синдромов: <u>ишемического и реперфузионного</u>.

К механизмам реперфузионного повреждения относят:

- 1) Усугубление нарушения энергетического обеспечения клеток реперфузируемого миокарда на этапах ресинтеза, транспорта и утилизации энергии АТФ.
- 2) Нарастание степени повреждения мембран и ферментов клеток миокарда (активируются кислородзависимые липоперекисные процессы, кальциевая активация протеаз и т.д.).
 - 3) ↑ дисбаланса ионов и жидкости.
- 4) ↓ эффективности регуляторных (нервных, гуморальных) воздействий на клетки миокарда.
- 5) Расстройства микроциркуляции (↑ проницаемости стенки капилляров миокарда вследствие высвобождения активированными лейкоцитами и эндотелиоцитами протеаз, цитокинов и др.).

Изменения показателей функции сердца при **КН**

- Ударный и сердечный выбросы, как правило, снижаются. Величина снижения коррелирует со степенью и продолжительностью ишемии миокарда, размером и топографией поврежденной зоны сердца. Механизм компенсации тахикардия.
- Конечное диастолическое давление в полостях сердца обычно возрастает. Оно обусловлено: а) ↓ сократительной функции поврежденного миокарда, что ведет к увеличению «остаточного» объема крови в его полостях; б) ↓ степени диастолического расслабления миокарда (избыток Са²+ в миофибриллах ☞ субконтрактурное состояние).

Лабораторная диагностика инфаркта миокарда

- 1. Периферическая кровь: нейтрофильный лейкоцитоз со сдвигом влево, эозинопения, лимфопения, ↑СОЭ;
- 2. БХ крови:
- ↑содержание С-реактивного белка, гаптоглобина, ИЛ-1,ФНО (развитие ООФ);
- ↑содержание глюкозы (следствие ↑ адреналина);
- Метаболический ацидоз;
- ↑фибриноген, протромбиновый индекс, ↓время свертывания (возможно развитие ДВС-синдрома);
- Гиперкалиемия;
- 3. Появление в крови БХ маркеров гибели кардиомиоцитов: ↑ уровень в крови миоглобина, тропонинов, ↑активность общей КФК и особенно сердечной (КФК-МВ), ↑активность ЛДГ и АСТ (через 6-8 ч., максимум через 24-36 ч.)

Принципы патогенетической терапии ИМ

1. Догоспитальный период. Обезболивание:

- наркотические аналгетики (промедол, морфин);
- нейролептаналгезия (фентанил, дроперидол);
- нитраты (нитроглицерин в различных лек.формах);
- β-адреноблокаторы;
- аспирин.

2. Ограничение зоны инфаркта:

- нитраты;
- **-** β-адреноблокаторы;
- ингибиторы АПФ.

3. Коронарный тромболизис:

- стрептокиназа, урокиназа;
- тканевой активатор плазминогена.

4. Лечение нарушений ритма и проводимости:

- панангин, верапамил;
- селективные и неселективные β-адреноблокаторы;
- новокаинамид;
- электроимпульсная терапия.

Сердечная недостаточность (СН)

СН — типовая форма патологии, при которой нагрузка на сердце превышает его способность совершать адекватную этой нагрузке работу.

Нагрузка на сердце определяется в основном двумя факторами:

- величиной объема крови, притекающей к сердцу («преднагрузка»);
- сопротивлением изгнанию крови в аорту и легочную артери («постнагрузка»).

Виды сердечной недостаточности

- І. По происхождению:
 - 1) преимущественно в результате непосредственного повреждения миокарда «миокардиальная»;
 - 2) преимущественно в результате перегрузки сердца «перегрузочная»;
 - 3) смешанная.
- II. По первичности нарушения сократительной функции миокарда или притока венозной крови:
 - 1) первичная (кардиогенная) возникает в результате первичного \downarrow сократительной функции сердца при почти нормальной величине притока венозной крови;
 - 2) вторичная (некардиогенная) в результате первичного ↓ венозного притока к сердцу при близкой к нормальной величине сократительной функции миокарда.
- III. По преимущественно пораженному отделу сердца:
 - 1) левожелудочковая; 2) правожелудочковая; 3) тотальная.
- IV. По скорости развития:
 - 1) острая (минуты, часы); 2) хроническая (неделя, месяцы, годы).

Патогенез сердечной недостаточности

- Сердечная недостаточность вследствие повреждения миокарда характеризуется снижением развиваемого сердцем напряжения, что проявляется падением силы и скорости его сокращения и расслабления.
- СН в результате перегрузки миокарда формируется на фоне более или менее длительного периода его гиперфункции, что в конце также приводит к ↓ силы и скорости сокращения и расслабления сердца.

Факторы дисбаланса роста структур гипертрофированного сердца

- нарушение регуляции в связи с отставанием роста нервных окончаний от темпа увеличения массы кардиоцитов;
- ↓ «сосудистого обеспечения» миокарда в результате отставания роста артериол и капилляров от увеличения размеров мышечных клеток;
- большее увеличение массы клеток миокарда в сравнении с их поверхностью (как следствие развитие ионного дисбаланса и нарушение метаболизма клеток);
- снижение энергообеспечения клеток миокарда в результате меньшей массы митохондрий по сравнению с массой миофибрилл;
- нарушение пластических процессов в кардиомиоцитах в результате относительного ↓ числа митохондрий, ↓ поверхности клеток, объема микроциркуляторного русла и т.д.

Систолическая дисфункция левого желудочка

- Состояние низкого относительно потребностей организма объема крови, который левый желудочек выбрасывает в аорту за единицу времени
- Наиболее частая непосредственная причина сердечной недостаточности
- Снижает верхний предел адаптивного роста минутного объема кровообращения

Систолическая дисфункция левого желудочка

Рост конечного систолического объема левого желудочка

Вторичная легочная _ артериаль- ная гипертензия

Недостаточность насосной функции правого желудочка

Увеличение конечного диастолического объема левого желудочка

Несостоятельность компенсаторной реакции

Компенсаторная дилатация левого желудочка

Диастолическая дисфункция левого желудочка

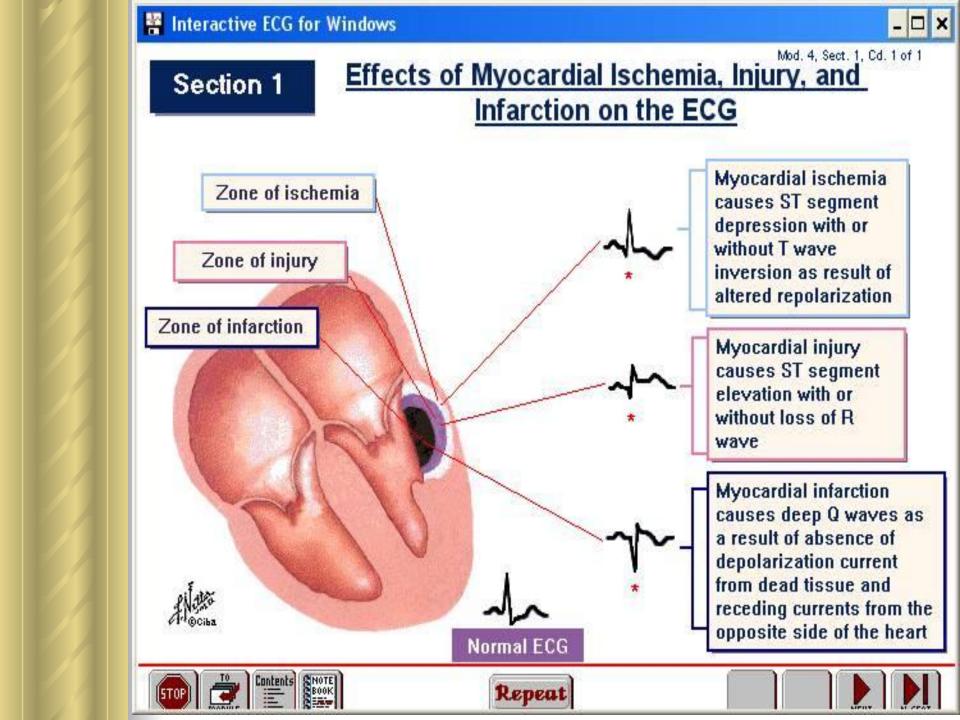
- Падение способности левого желудочка забирать соответствующий потребностям организма объем крови из левого предсердия и системы легочной артерии посредством активного расслабления саркомеров миокарда
- !!

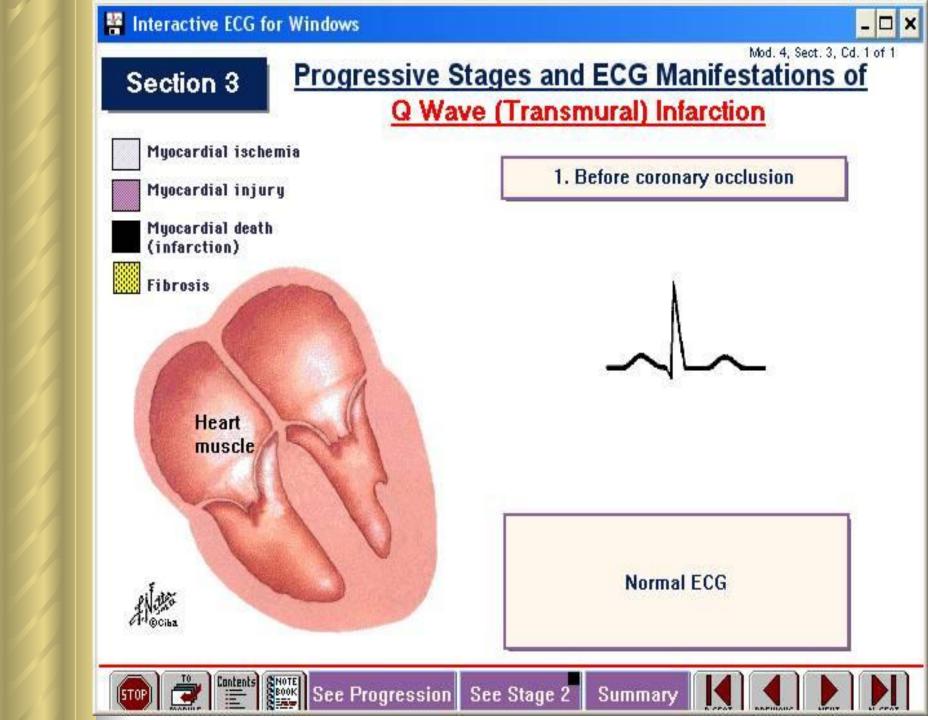
 Непосредственная причина сердечной недостаточности у 40% больных

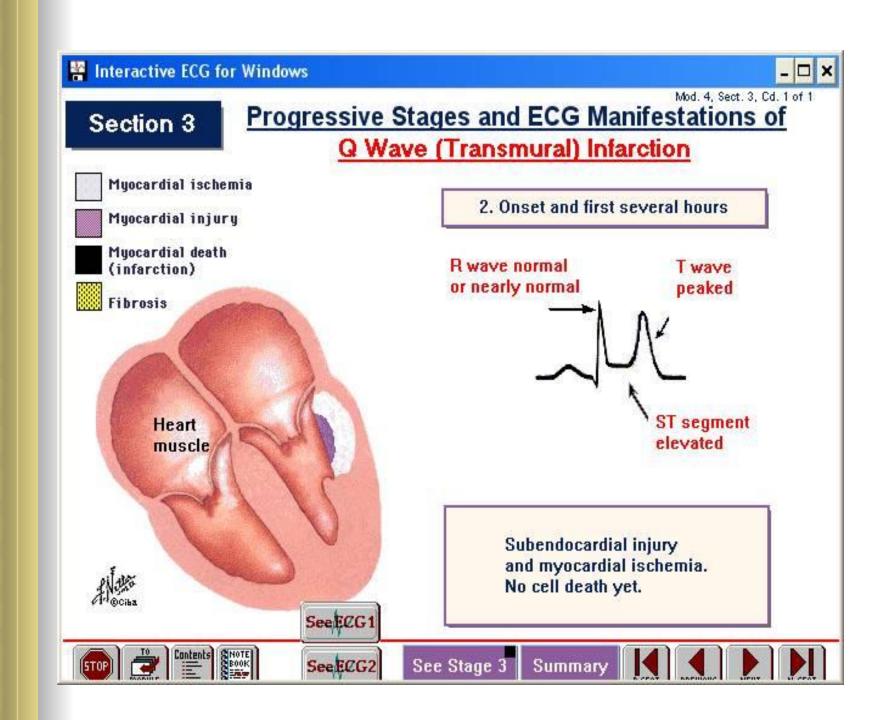
Факторы возникновения и обострения сердечной недостаточности

Фактор	Звено патогенеза
Избыточное потребление с пищей натрия хлорида	Низкий натрийурез, обусловленный падением скорости клубочковой фильтрации и вторичным альдостеронизмом. Рост преднагрзуки сердца. ↓ сократимости
Избыточное потребление воды с пищей и напитками	Рост преднагрузки сердца. Гипонатриемия. Отек рабочих и проводящих кардиомиоцитов

Фактор	Звено патогенеза
Эмболия легочной артерии	Рост постнагрузки правого желудочка как причина низкого диастолического наполнения левого
Мерцательная аритмия	Снижение фракции предсердия конечного диастолического объема левого желудочка. Снижение конечного диастолического объема левого желудочка, уменьшающее его ударный объем


Фактор	Звено патогенеза
Брадикардия	Снижение минутного объема кровообращения
Анемия Пороки сердца	Гемическая гипоксия, обусловливающая гипоэргоз кардиомиоцитов
Артериальные гипертензии	Длительная гиперфункция сердца

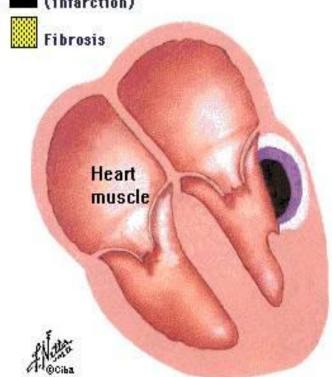

Фактор	Звено патогенеза
Гипертиреоз	Рост чувствительности β1- адренорецепторов сердца как причина тахикардии и роста сократимости. Патогенный рост потребности в кислороде кардиомиоцитов
Хроническая почечная недостаточность	Снижение концентрации свободного кальция в плазме крови. Гиперкалиемия, снижающая возбудимость клеток сердца и способствующая развитию аритмий


Фактор	Звено патогенеза
Алкоголизм	Действие этилового спирта в качестве адреномиметика. Отрицательное инотропное и кардиотоксическое действие алкоголя
Острый инфаркт миокарда	Возникновение зоны ишемии- гибернации кардиомиоцитов, обусловливающей гипокинезию сегментов миокарда

Нарушения функции сердца и гемодинамики при СН

- 1) ↓ ударного и минутного выбросов сердца;
- 2) ↑ остаточного систолического объема крови (следствие неполной систолы);
- 3) ↑ конечного диастолического давления в желудочках сердца в результате увеличения количества крови, скапливающейся в их полости, а также нарушения расслабления миокарда;
- 4) дилятация полостей сердца из-за увеличения в них конечного диастолического объема крови и растяжения миокарда;
- 5) ↑ давления крови в тех регионах сосудистого русла и сердечных полостях, откуда поступает кровь в преимущественно пораженный отдел сердца;
- 6) ↓ скорости сократительного процесса (↑ длительности периода изометрического напряжения и систолы в целом).

Mod. 4, Sect. 3, Cd. 1 of 1


Section 3

Progressive Stages and ECG Manifestations of Q Wave (Transmural) Infarction

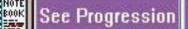
Myocardial ischemia

Myocardial injury

Myocardial death (infarction)

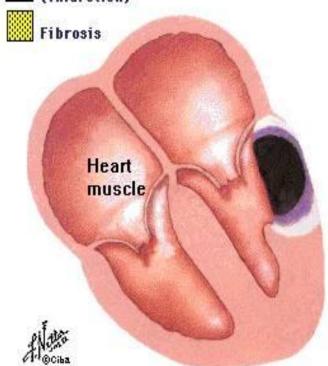
3. First day

R wave amplitude diminishing ST elevation more marked

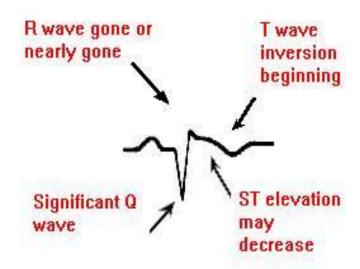

Ischemia and injury extend to epicardial surface. Subendocardial muscle dying in area of most severe injury.

Mod. 4, Sect. 3, Cd. 1 of 1

Section 3


Progressive Stages and ECG Manifestations of

Q Wave (Transmural) Infarction

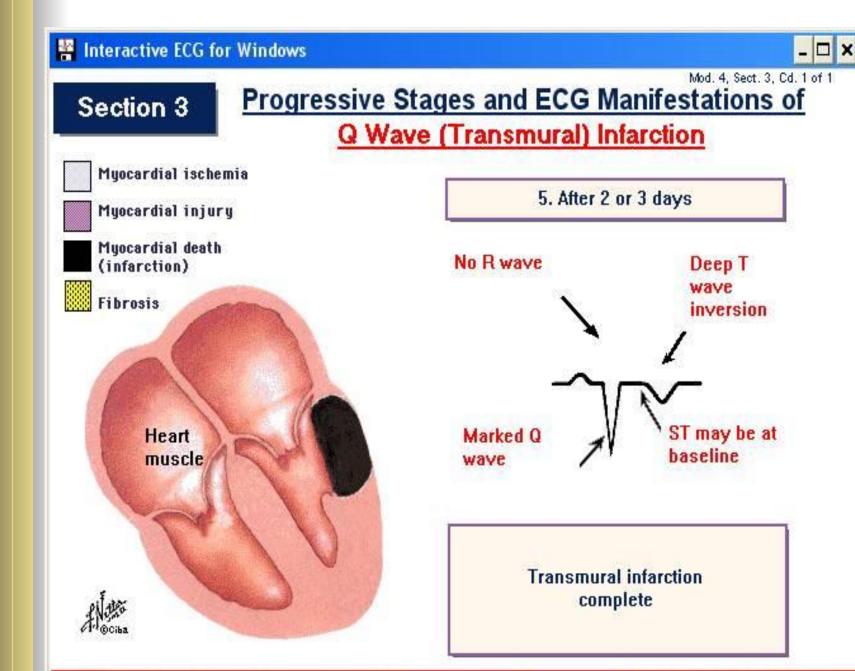

Myocardial ischemia

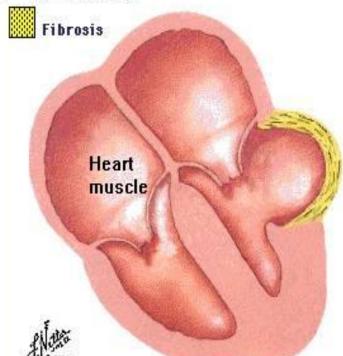
Myocardial injury

Myocardial death (infarction)

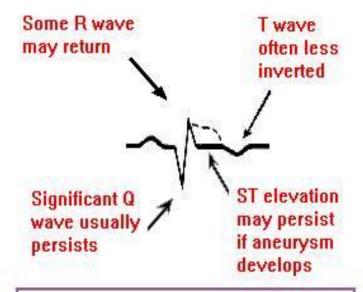
4. First and second days

Transmural infarction nearly complete. Some ischemia and injury may be present at borders.




_ 🗆 ×

Progressive Stages and ECG Manifestations of Q Wave (Transmural) Infarction


Myocardial ischemia

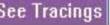
Myocardial injury

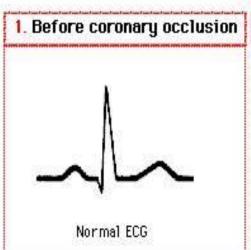
Myocardial death (infarction)

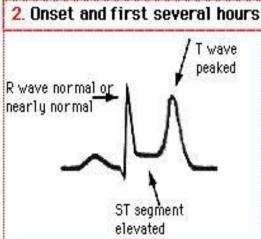
6. After several weeks or months.

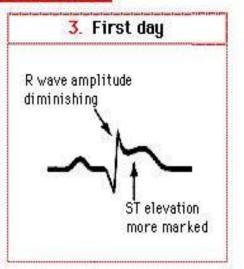
Infarcted tissue replaced by fibrous scar, sometimes bulging (ventricular aneurysm)

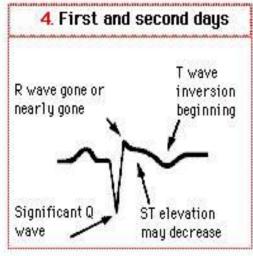
Summary

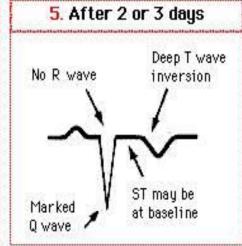


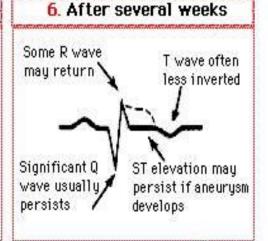


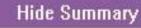


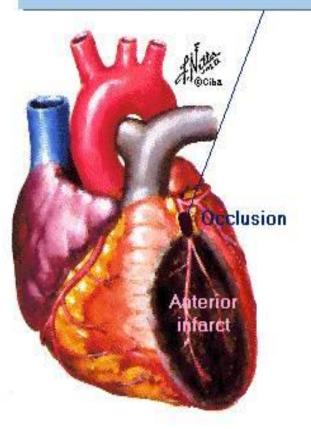

Section 3

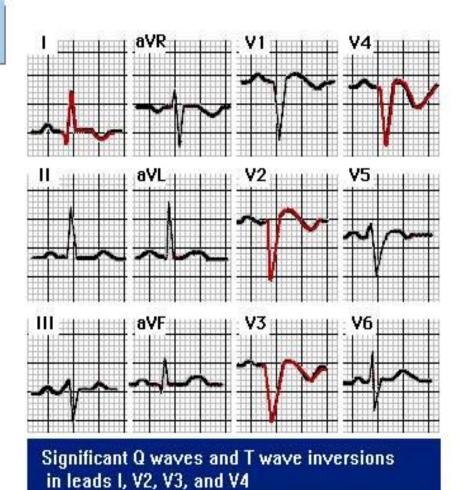

Progressive Stages and ECG Manifestations of


Q Wave (Transmural) Infarction








Mod. 4, Sect. 5, Cd. 1 of 1

Localization of Myocardial Infarcts Acute Anterior Infarct

Occlusion of proximal left anterior descending coronary artery

- Вопросы?
- Спасибо за внимание!
- Успехов Вам!