

Реологические свойства биологических тканей

План лекции

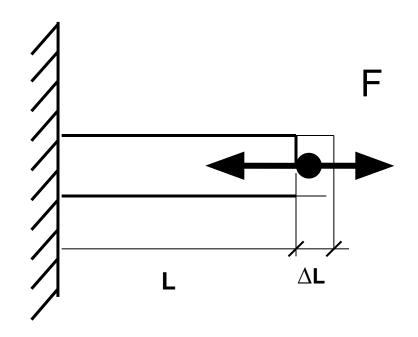
- Механические модели, реологическое уравнение абсолютно упругих, вязких и пластических тел.
- Упруго вязкие системы. Механическая модель Максвелла.
- Вязкоупругие системы. Механическая модель Кельвина—Фойгта.
- Общая характеристика реологических свойств мягких и твердых биологических тканей.

Деформация

- это изменение формы и размеров тела под действием внешних сил либо температуры
- характеризуется механическим напряжением (σ)

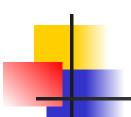
В твердых телах деформацию называют:

- *упругой,* если после прекращения действия сил она исчезает
- *пластической,* если после прекращения действия сил она сохраняется
- *упругопластической*, если после прекращения действия сил, происходит неполное ее исчезновение



Виды деформации

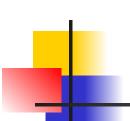
- РАСТЯЖЕНИЕ (СЖАТИЕ)
- СДВИГ
- ИЗГИБ
- КРУЧЕНИЕ



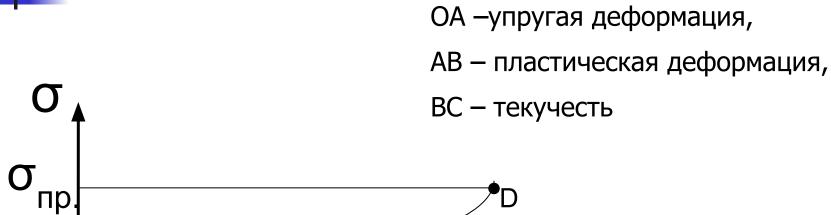
РАСТЯЖЕНИЕ (СЖАТИЕ)

$$\varepsilon = (\Delta L/L)$$

- $\sigma = F/S$
- σ механическое напряжение (Па)
- F сила (Н),
 направленная
 вдоль оси бруска
- S площадь поперечного сечения (м²)



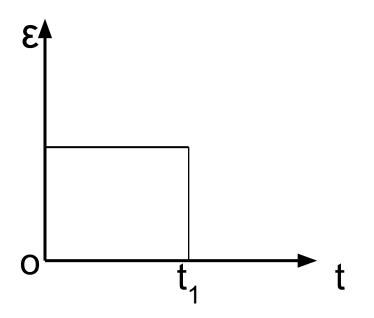
Закон Гука


- При небольшой величине относительной деформации связь между механическим напряжением и деформацией выражается законом Гука: σ = Εε
- При упругой деформации напряжение прямо пропорционально величине деформации
- Е модуль Юнга (модуль продольной упругости, Па), численно равен напряжению, увеличивающему длину образца в два раза

Модуль упругости (модуль Юнга) некоторых материалов

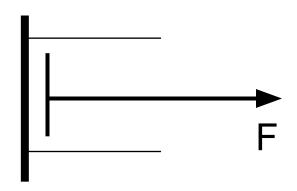
Материал	Модуль Юнга (Па)
Эластин	$10^5 - 10^6$
Коллаген	$10^7 - 10^8$
Мембрана эритроцита	4·10 ⁷
Мышечная ткань	9·10 ⁵
Кость	2·10 ⁹
Сухожилие	1,6·10 ⁸
Нерв	18,5·10 ⁶
Вена	8,5·10 ⁵
Артерия	5·10 ⁴
Сталь	2·10 ¹¹

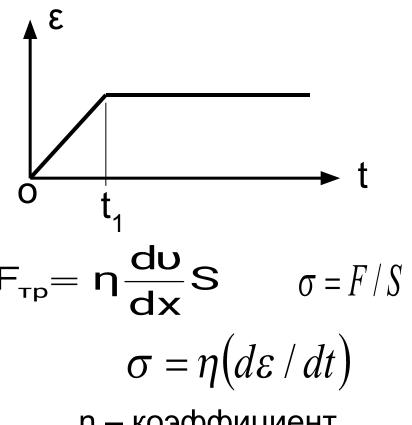
Зависимость напряжения от деформации (диаграмма растяжения)



Реологические модели

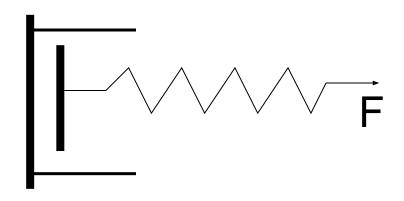
Модель упругого тела (пружина)


Подчиняется закону Гука Деформация (ϵ) мгновенно появляется в момент времени t=0 и мгновенно исчезает (t_1)

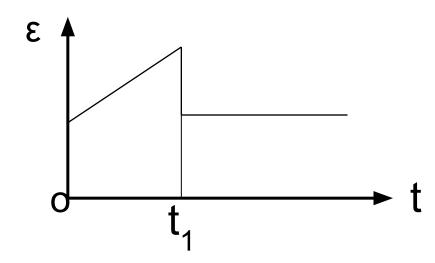


Модель вязкого тела (поршень)

Поршень с отверстиями, движется в цилиндре с вязкой жидкостью



η – коэффициент вязкости жидкости


Модель Максвелла (упруго-вязкий элемент)

Напряжение в каждом элементе является одинаковым. Для деформации выполняется условие:

$$\varepsilon_{\text{общ}} = \varepsilon_{\text{упр}} + \varepsilon_{\text{вяз}}$$

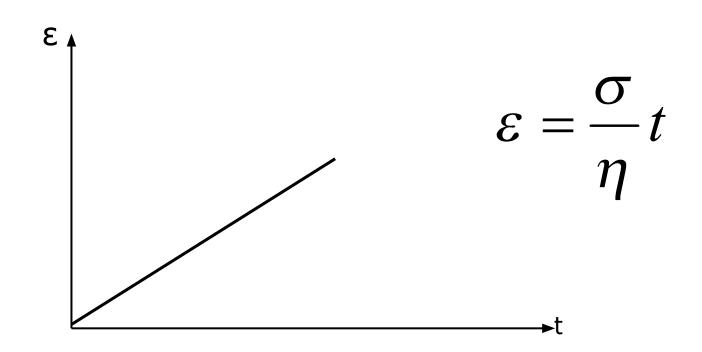
В момент времени t=0 пружина растягивается, затем деформация линейно нарастает за счет движения поршня. В момент времени t₁ пружина сокращается до начального размера, имеет место остаточная деформация

$$\varepsilon_{ynp} = \frac{\sigma}{E} \qquad \sigma = \eta \frac{d\varepsilon_{egg}}{dt} \qquad \frac{d\varepsilon_{egg}}{dt} = \frac{\sigma}{\eta}$$

$$\frac{d\varepsilon_{obuy}}{dt} = \frac{d\varepsilon_{ynp}}{dt} + \frac{d\varepsilon_{egg}}{dt} = \frac{1}{E}\frac{d\sigma}{dt} + \frac{\sigma}{\eta}$$

Ползучесть

$$\frac{d\varepsilon_{oбiu}}{dt} = \frac{d\varepsilon_{ynp}}{dt} + \frac{d\varepsilon_{sg3}}{dt} = \frac{1}{E}\frac{d\sigma}{dt} + \frac{\sigma}{\eta}$$


 $\sigma = \text{const}, \, d\sigma/dt = 0, \, d\epsilon/dt = \sigma/\eta$

$$d\varepsilon = \frac{\sigma}{\eta}dt$$

$$\varepsilon = \frac{\sigma}{\eta}t$$

Ползучесть

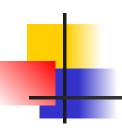
Релаксация напряжения в материале

$$\varepsilon$$
=const; $d\varepsilon/dt=0$

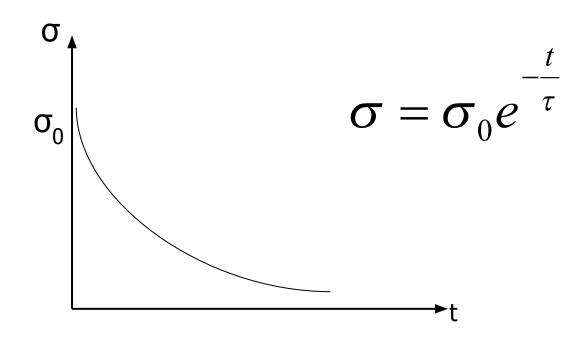
$$d\varepsilon/dt = 0$$

$$\frac{1}{E}\frac{d\sigma}{dt} = -\frac{\sigma}{\eta}$$

ИЛИ

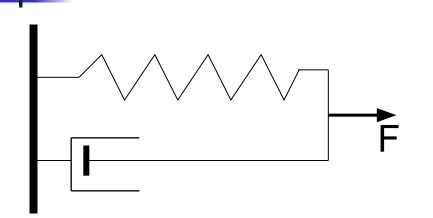

$$\frac{d\sigma}{\sigma} = -\frac{E}{\eta}dt$$

$$\int_{\sigma_0}^{\sigma} \frac{d\sigma}{\sigma} = -\int_0^t \frac{E}{\eta} dt$$


$$\ln \frac{\sigma}{\sigma_0} = -\frac{E}{\eta}t$$

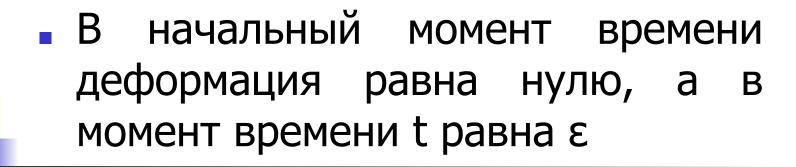
$$\sigma = \sigma_0 e^{-\frac{t}{\tau}}$$

$$\tau = \frac{\eta}{E}$$



Релаксация напряжения

Модель Кельвина-Фойгта


$$\sigma = \sigma_{ynp} + \sigma_{BR3}$$

$$\varepsilon_{ynp} = \frac{\sigma}{E}$$
 $\sigma = \eta \frac{d\varepsilon_{ess}}{dt}$

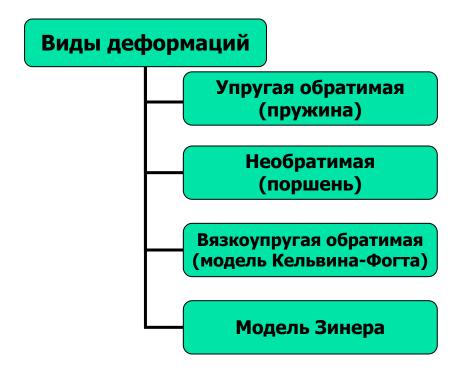
Удлинение одинаково для обоих элементов.

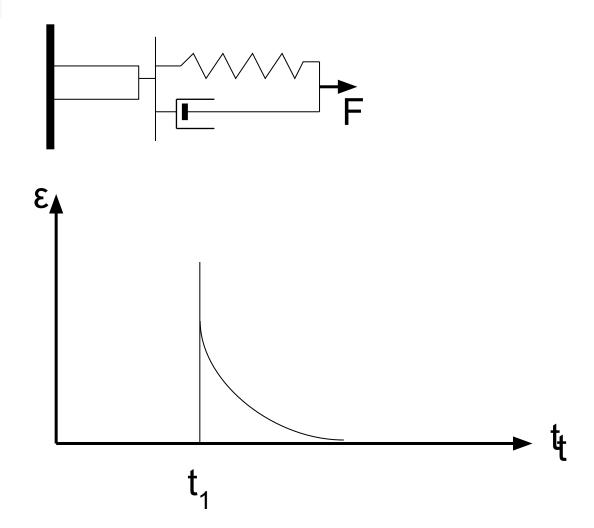
$$\sigma = E\varepsilon + \eta (d\varepsilon / dt)$$

или
$$\frac{d\varepsilon}{\sigma - E\varepsilon} = \frac{dt}{\eta}$$

$$\int_{0}^{\varepsilon} \frac{d\varepsilon}{\sigma - E\varepsilon} = \frac{1}{\eta} \int_{0}^{t} dt$$
 получим
$$-\frac{1}{E} \ln \frac{\sigma - E\varepsilon}{\sigma} = \frac{t}{\eta}$$

Потенцируя данное выражение получим


$$1 - \frac{E}{\sigma} \varepsilon = e^{-\frac{E}{\eta}t}$$
 или $\varepsilon = \frac{\sigma}{E} (1 - e^{-\frac{E}{\eta}t})$


```
• В рамках модели Кельвина—Фойгта деформация экспоненциально возрастает со временем.
```

• При снятии нагрузки деформация Экспоненциально убывает. t

Виды деформаций в материалах

Модель Зинера

Прочность – способность тел выдерживать без разрушения приложенную к ним нагрузку

- Предел прочности это предельное напряжение, при котором образец разрушается.
- Значение предела прочности зависит не только от свойств вещества, но и от способа деформации.

Предел прочности, МПа	Человек	Лошадь
Сжатие	170	145
Растяжение	124	121

Характеристики прочности

Вид ткани	Предел прочности на сжатие, МПа
Сплошная кость	147
Эмаль	34-45
Дентин	20
Ребро	1-4
Позвонок	7
Компактное вещество бедренной кости	1470-2940
Губчатое вещество бедренной кости	68
Связки крупных суставов	10-16
Кожа (живот)	17-36

 Разрушение – макроскопическое нарушение целостности материала в результате механических (или иных) воздействий.

Характер разрушения зависит от:

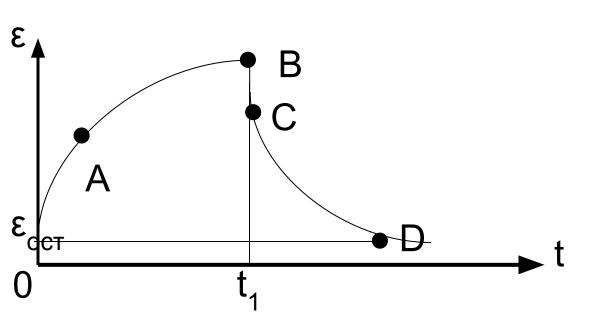
- свойств материала;
- состояния вещества (структуры);
- температуры;
- влажности;
- свойств объекта (размеры, форма, качество поверхности);
- динамики силового воздействия.

МЕХАНИЧЕСКИЕ СВОЙСТВА БИОЛОГИЧЕСКИХ ТКАНЕЙ.

 Большинство тканей являются анизотропными композитными материалами, образованными объемным сочетанием химически разнородных компонентов. Состав каждого типа тканей также зависит от ее функций.

Типы тканей

Костная ткань — основной материал опорно-двигательного аппарата.


Кожа Мышечная ткань Сосудистая ткань

Костная ткань Состав:

- Гидроксилапатит.
- Коллаген (волокнистый, высокоэластичный белок). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами).
- Способность кости к упругой деформации реализуется за счет минерального вещества, а ползучесть – за счет коллагена.

Примерный вид кривой ползучести компактной костной ткани

Реализуется в модели Зинера

OA- быстрая деформация

АВ- ползучесть. В момент времени t₁ нагрузка снята,

BCдеформация сокращения

CD- обратная ползучесть

Механические свойства костной ткани

Определяются:

- возрастом;
- заболеваниями;
- условиями роста.

Плотность — 2400 кг/м 3 . Е = 10^{10} Па, предел прочности $\sigma_{\text{пр}}$ = 100 МПа, относительная деформация — 1%. Бедренная кость в продольном направлении выдерживает нагрузку 45000 H, а при изгибе — 2500 H.

Запас механической прочности:

бедренная и берцовая кости выдерживают нагрузки в 25 - 30 раз больше веса нормального человека

Функции кожи:

- поддержание гомеостаза
- участие в процессе терморегуляции
- регуляция общего обмена веществ
- секреторная функция
- защита от внешних воздействий (механических, физических, химических).

Кожа состоит из:

- эпидермиса
- дермы,
- подкожной клетчатки.

Состав кожи

- Коллаген (75% сухой массы),
 - Эластин (4%)
 - Матрица

Кожа вязкоупругий материал с высокоэластичными свойствами, обладающий акустической анизотропией.

Механические характеристики:

```
коллаген — E= 10-100 МПа, \sigma_{np} = 100 МПа; эластин - E= 0,5 МПа, \sigma_{np} = 5 МПа
```

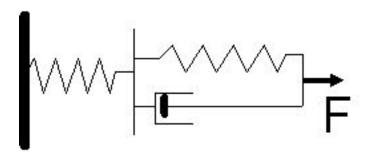
Эластин растягивается до 200 — 300%, коллаген до 10%.

Мышечная ткань состоит из:

- Коллагена
- Эластина

Мышцы бывают:

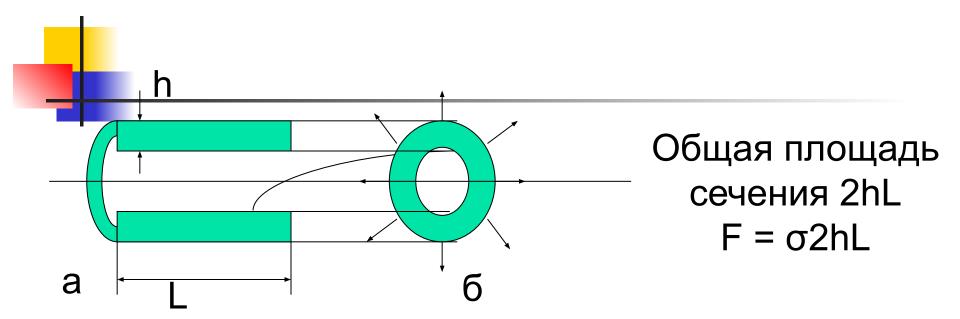
- скелетные (сердечная)
- гладкие (кишечник)


Плотность мышц 1100кг/м³; E= 10^5 МПа.

Поведение описывается моделью Максвелла

Скелетная мышца

 представляет собой вязкоупругий материал (модель Зинера). Для нее характерна релаксация напряжения. Модуль упругости мышцы зависит от нагрузки и называется эффективным или тангенциальным.



Режим сокращения мышц:

- Изометрический (длина мышцы не изменяется, вся сила затрачивается на совершение статической работы);
- Изотонический (поддерживается постоянное напряжение мышцы).

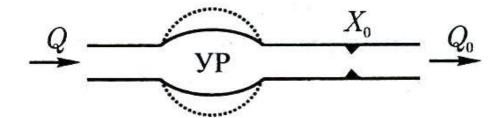
СОСУДИСТАЯ ТКАНЬ

- Механические свойства кровеносных сосудов определяются свойствами коллагена, эластина и гладких мышечных волокон.
- С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они являются основной составляющей сосудистой ткани.
- Стенки сосудов способны к значительным обратимым изменениям размера под действием деформирующей силы, обусловленной избыточным внутренним давлением.

Сечение сосуда вдоль оси (а) и поперек (б)

F = 2PrL, где Р избыточное давление, и так Рассмотрим деформацию сосуданение умение умение длиной L и дольциной h

σ - механическое напряжение


Модели кровообращения

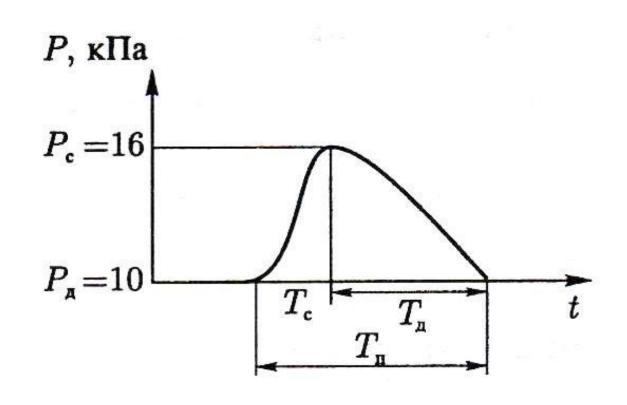
Модель Франка (упругий резервуар)

Электрическая модель

 Модель с распределенными параметрами

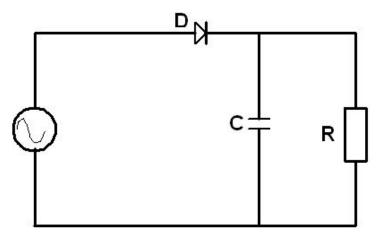
Модель Франка

$$P = P_0 e^{-\frac{\iota}{kx_0}}$$

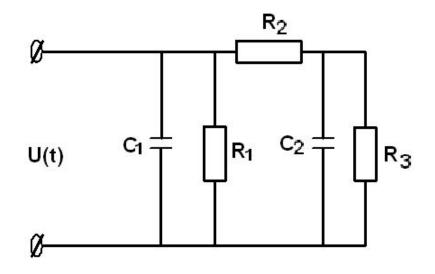

 $P=P_0e^{-kx_0}$ Зависимость давления в резервуаре после систолы

К – эластичность стенок; x_0 — сопротивление периферических сосудов.

$$Q = Q_0 e^{-\frac{t}{kx_0}}$$


Скорость оттока крови

Зависимость давления от времени за период сокращения



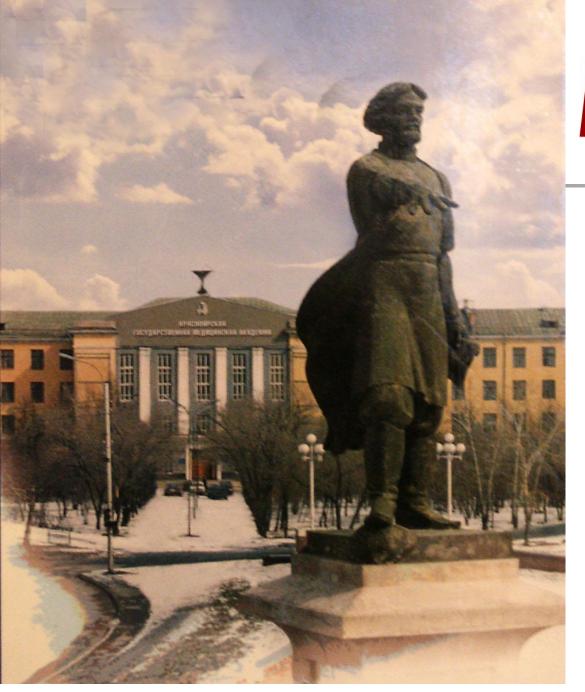
Электрическая модель

Модели, содержащие несколько сотен элементов, называют моделями с распределенными параметрами

Пульсовая волна

$$P=P_0e^{-\chi x}\cos\omega(t-rac{\chi}{\upsilon})$$
 уравнение гармонической пульсовой волны

$$\upsilon = \sqrt{\frac{Eh}{\rho d}}$$


Формула Моенса-Кортевега

Е – модуль упругости;

ρ – плотность вещества;

h – толщина стенки сосуда;

d – диаметр сосуда.

БЛАГОДАРЮ ЗА ВНИМАНИЕ

Уважаемые старосты!

Вы сдали списки отсутствующих?