

федеральное агентство по образованию Сибирский федеральный университет

Федеральное государственное образовательное учреждение высшего профессионального образования

Кафедра «Радиотехника»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Федеральное государственное образовательное учреждение высшего профессионального образования

Сибирский федеральный университет

Кафедра «Радиотехника»

К.т.н., доцент Алешечкин Андрей Михайлович

Метрология и радиоизмерения

Лекция 3. Измерение временных интервалов

Институт инженерной физики и радиоэлектроники

Направление 210200.62 Радиотехника

План лекции

- 1 Структурная схема цифрового измерителя временных интервалов
- 2 Погрешности цифрового метода измерения временных интервалов
- <u>3 Нониусный метод измерения однократного временного интервала</u>

Структурная схема цифрового измерителя временных интервалов

Структурная схема цифрового измерителя временных интервалов

Структурная схема цифрового измерителя временных интервалов

Эпюры напряжений входах и выходе на временного селектора

 $\tilde{\tau}$ число импульсов, попавших внутрь временного строба (квад ратные скобки означают выделение целой части числа)

 $au_{ au}$ - временной интервал (фигурные скобки означают выделение дробной части числа)

При цифровом измерении временных интервалов выделяют следующие погрешности, классифицируемые по слагаемым измерения:

- 1.Погрешность меры;
- 2.Погрешность преобразования;
- 3.Погрешность сравнения (дискретности, квантования);
- 4.Погрешность фиксации (в данном случае отсутствует, поскольку используется цифровая индикация показаний).

Погрешность меры

Обусловлена в первую очередь нестабильностью частоты следования квантующих импульсов, вырабатываемых генератором импульсов

$$\delta_{\kappa e} = \frac{\Delta f_{\kappa e}}{f_{\kappa e}}$$

 $\delta_{\kappa g} = \frac{\Delta f_{\kappa g}}{f_{\kappa g}}$ - относительная нестабильность частоты кварцевого генератора $(\delta_{10} \approx 10^{-8} \div 10^{-9})$

$$\delta_{_{\scriptscriptstyle M}}=\delta_{_{\scriptscriptstyle KB}}$$

- относительная погрешность меры

$$\Delta_{_{\scriptscriptstyle M}}=\delta_{_{\scriptscriptstyle KB}}\cdot au$$

Погрешность преобразования

Обусловлена в основном шумовой помехой, проявляющейся при формировании стробирующего импульса (временных ворот).

$$\Delta_{_{3an}}= au$$
' $- au$ - погрешность запуска триггера

$$\delta_{np} = \frac{1}{\sqrt{2} \cdot \pi \cdot q}$$
- относительная погрешность преобразования)

$$\Delta_{np} = \delta_{np} \cdot \tau = rac{ au}{\sqrt{2} \cdot \pi \cdot q}$$
 - абсолютная погрешность преобразования

Появление погрешности преобразования при наличии помехи на входе измерителя временных интервалов

ИЗМЕРЕНИЕ ВРЕМЕННЫХ ИНТЕРВАЛОВ

Погрешности цифрового метода измерения временных интервалов

Погрешность сравнения (квантования)

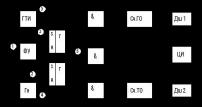
Методическая погрешность, обусловленная дискретизацией непрерывной величины – измеряемого интервала времени.

Закон распределения погрешности несинхронизированного квантования априорно неизвестного временного интервала

Предельно допустимые погрешности

Предельно допустимая абсолютная погрешность цифрового измерителя временных интервалов определяется как сумма погрешностей меры, преобразования и квантования:

$$\Delta_{npeo} = \Delta_{M} + \Delta_{np} + \Delta_{\kappa e} = \delta_{\kappa e} \cdot \tau + \delta_{np} \cdot \tau + t_{0}$$


Предельно допустимая основная погрешность измерения временных интервалов, выраженная в процентах от измеряемого временного интервала:

$$\delta_{npe\partial} = \left(\delta_{\kappa e} + \delta_{np} + \frac{1}{n}\right) \cdot 100\%$$

Нониусный метод измерения однократного временного интервала

Нониусный метод

Применяется для измерения однократных импульсов наносекундной длительности

Структурная схема измерителя ВИ нониусным методом

Нониусный метод измерения однократного временного интервала

- •
- 2
- 3
- •
- 6

Эпюры напряжений нониусного измерителя ВИ

ИЗМЕРЕНИЕ ВРЕМЕННЫХ ИНТЕРВАЛОВ