Лекция 2

"Учение о наследственности растений"

План:

Понятие наследственности и наследования Эволюционное учение Ч. Дарвина и виды наследственности по К.А. Тимирязеву Законы наследственности Г. Менделя Моногибридное, дигибридное и полигибридное скрещивания

Наследственность и наследование

- Наследственность в широком смысле слова это свойство организма воспроизводить себе подобных; преемственность в поколениях.
- Наследование отражает наличие процесса передачи генетической информации от одного клеточного или организменного поколения к другому, т.е. передачи системы контроля развития признаков организма.
- Наследуемость генотипическая обусловленность изменчивости признака для группы организмов.

Эволюционное учение Ч. Дарвина

- Впервые вопросы наследственности и изменчивости были подняты и обоснованы Ч. Дарвином.
- Главная заслуга Ч. Дарвина в том, что он раскрыл движущие силы эволюции.
- Движущей силой эволюции по Дарвину является наследственная изменчивость и отбор.

Филогенез

- Признаки организмов сформировались в процессе длительного филогенетического развития данного вида, и порождение одним видом другого в природе не существует.
- Филогенез (или эволюция вида) развитие любой группы родственных друг другу организмов, в процессе которого виды, возникшие из ранее существовавших, располагаются в ряду последовательно.

Виды наследственности по К.А.Тимирязеву

- К.А. Тимирязев различал простую и сложную наследственность.
- Простая наследственность имеет место при вегетативном размножении растений, когда дочерняя особь воспроизводится из какойнибудь части материнского растения, например черенка, почки, листа.
- В этом случае наследование признаков материнского растения бывает, как правило, полное.

Сложная наследственность

- Сложная наследственность наблюдается, при половом размножении, когда дочерние особи, возникшие из семян, получившихся из зиготы в результате слияния мужских и женских гамет, должны сочетать признаки обоих родителей.
- Сложная наследственность подразделяется на смешанную, слитную и взаимоисключающую.

Виды сложной наследственности

- смешанная наследственность у потомства можно обнаружить признаки одного и другого родителя
- слитная наследственность- потомство имеет промежуточное строение.
- взаимоисключающая наследственность у потомства проявляются признаки только одного из родителей

Атавизм – проявление признаков отдаленных предков

Законы наследственности Г. Менделя

Первый закон

- У гибридов первого поколение из каждой пары контрастирующих признаков развивается только один, а второй не проявляется, как бы исчезает.
- Проявляющийся признак был назван доминантным, а подавляемый рецессивным.
- Это явление получило название доминирования, а позднее — первого закона Менделя, или закон единообразия гибридов первого поколения.

Второй закон

- При самоопылении во втором гибридном поколении возникают особи как с доминантными, так и с рецессивными признаками.
- Причем отношение первых ко вторым в среднем равно 3:1.
- Это явление было названо законом расщепления или вторым законом Менделя

- При последующем самоопылении гибридов растения с рецессивными признаками дают константное потомство, устойчиво сохраняющее признак родителя,
- а среди растений с доминантным признаком 2/3 вновь расщепляются в соотношении 1:3 и лишь 1/3 остается константной.
- Отсюда следует, что хотя все растения с доминантным признаком внешне были однородными, содержащиеся в них наследственные задатки оказались различными

- Таким образом, анализ потомства во втором гибридном поколении выявил следующие два типа расщепления:
- а) по внешнему проявлению признака, которое выражается отношением 3:1;
- б) по наследственным задаткам, выраженным отношением 1:2:1.
- Позже первый тип расщепления был назван расщеплением по фенотипу, т.е. по внешнему расщеплению признака, второй — по генотипу, т.е. по наследственным задаткам

Третий закон

 На основании одновременного анализа наследования нескольких пар контрастирующих признаков у скрещиваемых горохов (цветки белые и красные, горошины желтые и зеленые, морщинистые и гладкие) Мендель установил, что каждая пара признаков ведет себя независимо от другой.

• Независимое расщепление и случайное комбинирование признаков в тех случаях, когда родители разняться по двум и более парам контрастирующих наследственных особенностей, было названо третьим законом Менделя.

Закономерности наследования

Мендель установил что:

- признаки организма определяются отдельными наследственными факторами, которые передаются через половые клетки;
- отдельные признаки организмов при скрещивании не исчезают, не разбавляются и не смешиваются, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов

Открытие этих явлений относится к закономерностям наследования.

Единица наследственности

- Единицей наследственности принято считать ген.
 Ген (греч. genos род, происхождение) —
 дискретный наследственный фактор, как его
 понимал Г. Мендель.
- В дальнейшем ген определили как функционально неделимую единицу наследственного материала; структурно это участок молекулы ДНК (у некоторых видов РНК) или последовательность нуклеотидов, которой может быть приписана определенная функция в организме.
- Термин «ген» предложен В. Иогансеном в 1909 г.

Гибридологический метод

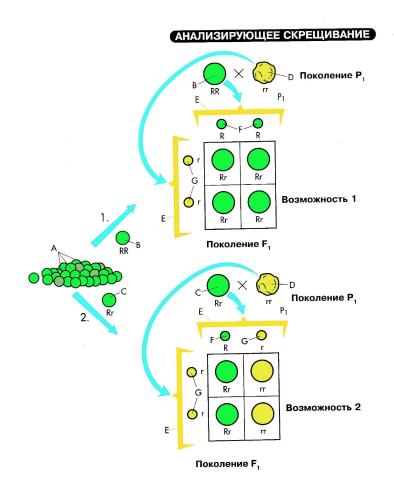
 Система скрещиваний, позволяющая проследить закономерности наследования и изменения признаков в ряду поколений.

Особенности метода:

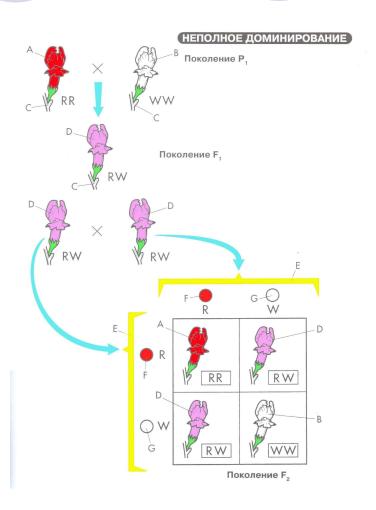
- Целенаправленный подбор родителей, различающихся по одной, двум, трем и т.д. парам контрастирующих признаков;
- Учет наследования признаков по каждой паре в каждом поколении;
- Индивидуальная оценка потомства от каждого родителя в ряду поколений.

Гибридологический анализ

Обозначения


- Родителей обозначают буквой Р (лат. parents родители),
- женский пол знаком $\stackrel{\frown}{\downarrow}$ (зеркало Венеры), мужской $\stackrel{\frown}{\circlearrowleft}$ (копье Марса),
- скрещивание ×,
- гибридная популяция буквой *F* (лат. filialis сыновний) с соответствующими цифровыми индексами (*F1* первое, *F2* второе, *F3* третье поколение и т. д.).

Моногибридное скрещивание


 Моногибридным называется скрещивание, при котором анализируется наследование одной пары альтернативных (взаимоисключающих) признаков

- Каждый организм один задаток (ген) получает от материнского организма, а другой от отцовского, следовательно, получаемые гены являются парами.
- Явление парности генов В. Иогансен в 1926 назвал аллелизмом;
- каждый ген пары аллелью.
- Например, желтая и зеленая окраска семян гороха являются двумя аллелями (соответственно доминантной аллелью и рецессивной аллелью) одного гена.
- Место расположения гена на хромосоме локус.

Полное доминирование

Неполное доминирование

- В настоящее время известно, что существуют гены, имеющие не две, а большее количество аллелей.
- Наличие у гена большого количества аллелей называют множественным аллелизмом.
- Множественный аллелизм является следствием возникновения нескольких мутаций одного и того же гена.

- Организмы, имеющие одинаковые аллели одного гена, называются гомозиготными.
- Они могут быть гомозиготными по доминантным (AA) или по рецессивным (aa) генам.
- Организмы, имеющие разные аллели одного гена, называются гетерозиготными (Аа).

- Совокупность всех генов организма называют генотипом.
- Совокупность всех признаков организма называют фенотипом. Доминантный признак всегда проявляется фенотипически.
- В соматических клетках каждый ген представлен двумя аллелями гомологичной пары.
- Каждая гамета (половая клетка) содержит одну аллель из каждой аллельной пары генов.

Число типов гамет равно 2ⁿ, где *n* – число генов, находящихся в гетерозиготном состоянии.

Например,

- особь с генотипом AaBBCC образует 2 типа гамет: ABC и aBC,
- с генотипом AaBBCc 4 типа $(2^2 = 4)$,
- а с генотипом AaBBCc 8 типов $(2^3 = 8)$.

Дигибридное скрещивание

- Дигибридным называют скрещивание, при котором анализируется наследование двух пар альтернативных признаков.
- Анализ количественных соотношений групп гибридов *F2*, имеющих определенное сочетание признаков, привел к заключению:
- расщепление по фенотипу при скрещивании дигетерозигот происходит в соотношении
 (3:1) x (3:1) = 9:3:3:1:

Дигибридное скрещивание

- 9/16 растений F2 обладали доминантными признаками (гладкие желтые семена);
- 3/16 были желтыми (доминантный) и морщинистыми (рецессивный);
- 3/16 были зелеными и (рецессивный) и гладкими (доминантный);
- 1/16 растений *F2* обладали обоими рецессивными признаками (морщинистые семена зеленого цвета).

Дигибридное скрещивание

7	AB	Ab	aB	ab
9				
AB	AA	AA	Aa	Aa
	BB	Bb	BB	Bb
Ab	AA	AA	Aa	Aa
	bB	bb	bB	bb
aB	aA	aA	aa	aa
	BB	Bb	BB	Bb
ab	aA	aA	aa	aa
	bB	bb	bB	bb

- Распределение по генотипу дает 9 классов в следующих числовых соотношениях:
- (1:2:1) × (1:2:1) = 1:2:1:2:4:2:1:2:1, или 4:2:2:2:2:1:1:1:1.

Анализирующее скрещивание

- Скрещивание гибридов или особи с неизвестным генотипом с особью, гомозиготной по рецессивному признаку
- Потомство расщепляется 1:1

Полигибридное скрещивание

- Скрещивания особей, различающихся по трем и более парам аллельных признаков, называются полигибридными.
- Они дают сложную картину расщепления по сравнению с дигибридными скрещиваниями, но подчиняются тем же закономерностям наследования.
- Число возможных комбинаций гамет и количество классов по фенотипу и генотипу можно определить, пользуясь таблицей.

Количественные закономерности образования гамет расщепления гибридов при различных типах скрещивания

Учитываемое Виды скрещивания				
JANIDIDACMUC	онды скрещивания			
явление	Моно-	Дигибрид-	Поли-	
	гибридное	ное	гибридное	
Число типов гамет,	2	22	2^n	
образуемых гибридом $oldsymbol{F_1}$				
Число комбинаций гамет при	4	42	4 ⁿ	
образовании F_{2}				
Число фенотипов F_2	2	2 ²	2 ⁿ	
Число генотипов F_2	3	3 ²	3 ⁿ	
Расщепление по фенотипу в F_2	3 + 1	$(3+1)^2$	$(3+1)^n$	
Расщепление по генотипу в F_2	1+2+1	$(1+2+1)^2$	$(1+2+1)^n$	