Лекция 2.

- Бесконечно малые и бесконечно большие последовательности.
- Арифметические операции над сходящимися числовыми последовательностями.

Определение бесконечно малой и бесконечно большой последовательности.

Числовая последовательность $\{\alpha_n\}$ называется *бесконечно малой*, если

ПРИМЕР 1. Покажем, что $\alpha_n = 1/n$ – бесконечно малая.

Возьмем $\forall \varepsilon > 0$.

Решив относительно n неравенство $|\alpha_n| = 1/n < \varepsilon$, получим: $n > 1/\varepsilon$.

Возьмем $N(\varepsilon) = [1/\varepsilon] + 1$. Тогда

$$\forall n \geq N(\varepsilon) \rightarrow |\alpha_n| < \varepsilon.$$

Числовая последовательность $\{x_n\}$ называется бесконечно большой, если

В этом случае пишут

ПРИМЕР 2. Покажем, что $x_n = (-1)^n n$ — бесконечно большая.

Возьмем $\forall \varepsilon > 0$.

Решив относительно n неравенство $|x_n| = n > \varepsilon$ и взяв $N(\varepsilon) = [\varepsilon] + 1$, получим:

$$\forall n \ge N(\varepsilon) \to |x_n| > \varepsilon.$$

Аналогично определяются пределы, равные $\pm \infty$.			
ПРИМЕР 3.			

ПРИМЕР 4. ЗАМЕЧАНИЕ.

Запись

носит условный характер. На самом деле

предела здесь нет!

Свойства бесконечно малых и бесконечно больших последовательностей.

TEOPEMA 1.

Алгебраическая сумма двух бесконечно малых есть бесконечно малая.

Доказательство.

Пусть $\{\alpha_n\}$ и $\{\beta_n\}$ – бесконечно малые.

Покажем, что $\{\alpha_n \pm \beta_n\}$ – бесконечно малая.

Возьмем $\forall \, \varepsilon > 0$. Тогда, согласно определению бесконечно малой, для $\varepsilon_1 = \varepsilon / 2$

$$\exists N_1(\varepsilon/2) \in \mathbb{N} : \forall n \ge N_1 \to |\alpha_n| < \varepsilon/2, \\ \exists N_2(\varepsilon/2) \in \mathbb{N} : \forall n \ge N_2 \to |\beta_n| < \varepsilon/2.$$

Возьмем $N(\varepsilon)=\max\{N_1,N_2\}$. Тогда, воспользовавшись свойством модуля вещественного числа, для всех $n\geq N$ имеем оценку:

$$|\alpha_n \pm \beta_n| \le |\alpha_n| + |\beta_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon,$$

т.е. $\{\alpha_n \pm \beta_n\}$ – бесконечно малая.

СЛЕДСТВИЕ.

Сумма конечного числа бесконечно малых есть бесконечно малая.

ЗАМЕЧАНИЕ.

Последнее утверждение неверно, если число слагаемых растет с ростом n. Например

бесконечно малые, а их сумма

т.е. в данном случае сумма не стремится к нулю при $n \to \infty$.

TEOPEMA 2.

Произведение бесконечно малой числовой последовательности на ограниченную есть бесконечно малая.

Доказательство.

Пусть $\{\alpha_n\}$ – бесконечно малая, $\{x_n\}$ – ограниченная.

Покажем, что $\{\alpha_n \cdot x_n\}$ – бесконечно малая.

Пусть C > 0: $|x_n| \le C \ \forall n$. Возьмем $\forall \varepsilon > 0$. Тогда, согласно определению бесконечно малой последовательности, для $\varepsilon_1 = \varepsilon \ / \ C$ $\exists \ N(\varepsilon / C) \in \mathbb{N}: \ \forall \ n \ge N(\varepsilon / C) \to |\alpha_n| < \varepsilon / C$.

Воспользовавшись свойством модуля вещественного числа, для всех $n \ge N$ имеем оценку:

$$|\alpha_n \cdot x_n| \le |\alpha_n| \cdot |x_n| < (\varepsilon / C) \cdot C = \varepsilon,$$

т.е. $\{\alpha_n \cdot x_n\}$ – бесконечно малая.

СЛЕДСТВИЕ.

Произведение конечного числа числовых последовательностей, из которых хотя бы одна бесконечно малая, а остальные ограниченные, есть бесконечно малая.

TEOPEMA 3.

Числовая последовательность $\{x_n\}$, где $x_n \neq 0 \ \forall n$ является бесконечно малой тогда и только тогда, когда $\{1/x_n\}$ — бесконечно большая.

Доказательство.

1) Пусть $\{x_n\}$ — бесконечно малая последовательность. Возьмем $\forall \varepsilon > 0$. Согласно определению бесконечно малой, для $\varepsilon_1 = 1/\varepsilon$

$$\exists N(\varepsilon_1) \in \mathbb{N}: \forall n \ge N(\varepsilon_1) \to |x_n| < 1/\varepsilon.$$

Отсюда следует, что $|1/x_n| > \varepsilon$ для $\forall n \ge N$, т.е. $\{1/x_n\}$ — бесконечно большая.

2) Пусть $\{1/x_n\}$ — бесконечно большая последовательность. Возьмем $\forall \, \varepsilon > 0$. Согласно определению бесконечно большой, для $\varepsilon_1 = 1/\varepsilon$

$$\exists N(\varepsilon_1) \subseteq \mathbb{N}: \forall n \ge N(\varepsilon_1) \to \lceil 1/x_n \rceil > \varepsilon.$$

Отсюда следует, что $|x_n| < \varepsilon$ для $\forall n \ge N$, т.е. $\{x_n\}$ — бесконечно малая.

Арифметические операции над сходящимися числовыми последовательностями.

ЛЕММА.

где $\alpha_{\rm n}$ – бесконечно малая числовая последовательность.

Доказательство.

1. Пусть

Это значит, что

$$\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbb{N}: \forall n \ge N(\varepsilon) \to |x_n - a| < \varepsilon,$$

то есть $x_n - a = \alpha_n$ — бесконечно малая последовательность.

2. Пусть $x_n = a + \alpha_n$, где α_n – бесконечно малая. Из определения бесконечно малой последовательности следует, что

$$\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbb{N}: \forall n \geq N(\varepsilon) \rightarrow |x_n - a| < \varepsilon,$$

то есть

TEOPEMA.

1. Если $x_n = C = \text{const} \ \forall n$, то

2. Если

TO

a)

b)

c)

Доказательство.

1. $x_{\rm n} - {\rm C} = {\rm C} - {\rm C} = 0$ – бесконечно малая последовательность. Тогда, согласно лемме,

2. Согласно лемме,

$$x_n = a + \alpha_n, y_n = b + \beta_n,$$

где $\alpha_{\rm n}$, $\beta_{\rm n}$ – бесконечно малые последовательности. Тогда

a) $x_n \pm y_n = (a + \alpha_n) \pm (b + \beta_n) = (a \pm b) + (\alpha_n \pm \beta_n),$ где $\alpha_n \pm \beta_n$ – бесконечно малая последовательность и, согласно лемме,

 $x_n \cdot y_n = (a + \alpha_n) \cdot (b + \beta_n) = a \cdot b + (a\beta_n + b\alpha_n),$ где $a\beta_n + b\alpha_n$ – бесконечно малая последовательность и, согласно лемме,

c)

где

– бесконечно малая последовательность; то есть, согласно лемме,

СЛЕДСТВИЕ.

Если существует

то для любого числа C∈R

ЗАМЕЧАНИЕ.

В случае бесконечно больших последовательностей теоремы об арифметических операциях над ними неприменимы. Так, например, частное двух бесконечно больших последовательностей не всегда является бесконечно большой.