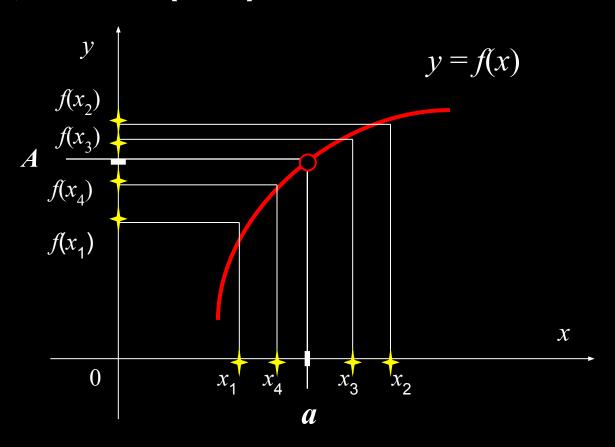
Раздел 2. ПРЕДЕЛ ФУНКЦИИ. НЕПРЕРЫВНОСТЬ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ.

Лекция 2.1

- Два определения предела функции в точке, их эквивалентность.
- Критерий Коши существования предела функции.
- Односторонние пределы и пределы при стремлении аргумента к бесконечности.
- Бесконечно малые и бесконечно большие функции.

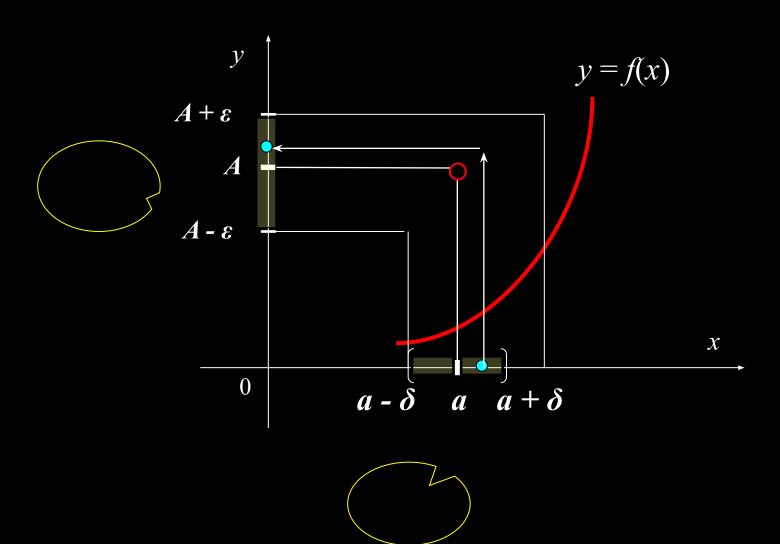
Два определения предела функции в точке

ОПРЕДЕЛЕНИЕ 1 (Гейне).



Пусть функция f(x) определена в Число A называется пределом функции f(x) в точке a, если для любой последовательности значений её аргумента сходящейся к точке а (T.e. соответствующая последовательность значений функции $\{f(x_n)\}$ $\mathsf{c}\mathsf{x}\mathsf{o}\mathsf{д}\mathsf{u}\mathsf{t}\mathsf{c}\mathsf{s}\;\mathsf{k}\;A$ (T.e. В этом случае пишут

ОПРЕДЕЛЕНИЕ 2 (Коши).



Пусть функция f(x) определена в

Число A называется пределом функции f(x) в точке a, если для любого числа $\varepsilon > 0$ найдется число $\delta(\varepsilon) > 0$, такое что для всех x, удовлетворяющих неравенству $0 < |x - a| < \delta$, выполняется неравенство

$$|f(x)-A|<\varepsilon.$$

Последнее определение можно записать с помощью логических символов, используя понятие окрестностей:

TEOPEMA.

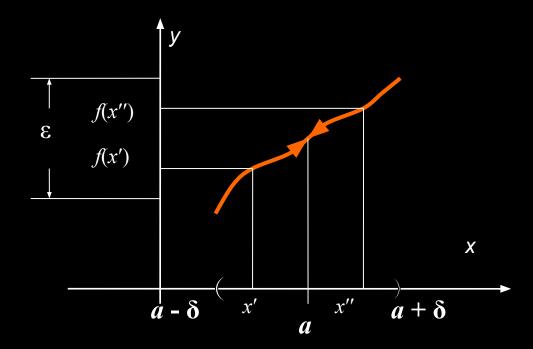
Два определения предела функции, по Коши и по Гейне, эквивалентны.

Критерий Коши существования предела функции.

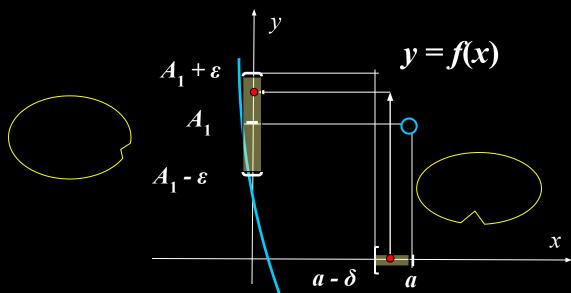
TEOPEMA.

Для того, чтобы функция f(x) имела предел в точке a, необходимо и достаточно, чтобы для любого $\varepsilon>0$ существовала такая проколотая δ -окрестность точки a, что для всех

выполнялось бы неравенство $|f(x') - f(x'')| < \varepsilon$.



Односторонние пределы.



Пусть функция f(x) определена в

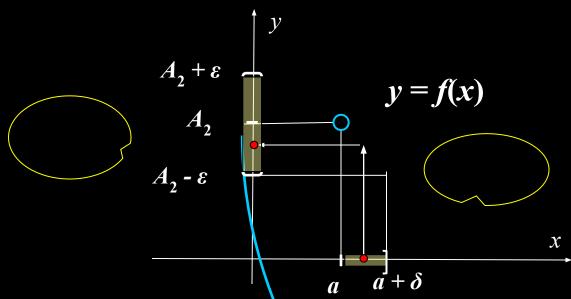
Число A_1 называется *предехом слева* функции f(x) в точке a и обозначается

или f(a-0), если $\forall \varepsilon > 0$ $\exists \delta(\varepsilon) > 0$, такое что для всех x, удовлетворяющих неравенству

$$a - \delta < x < a$$

выполняется неравенство

$$|f(x) - A_1| < \varepsilon$$
.



Пусть функция f(x) определена в

Число A_2 называется npedendy сnpaba функции f(x) в точке a и обозначается

или
$$f(a+0)$$
, если $\forall \varepsilon > 0 \ \exists \ \delta(\varepsilon) > 0$, такое что для всех x ,

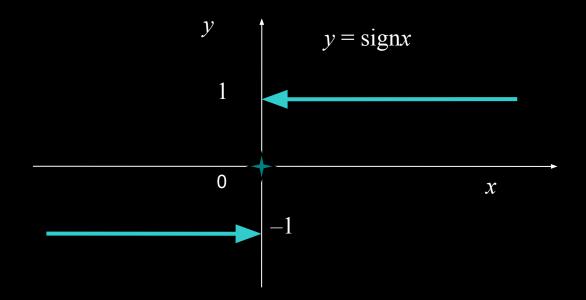
удовлетворяющих неравенству

$$a < x < a + \delta$$
,

выполняется неравенство

$$|f(x) - A_2| < \varepsilon$$
.

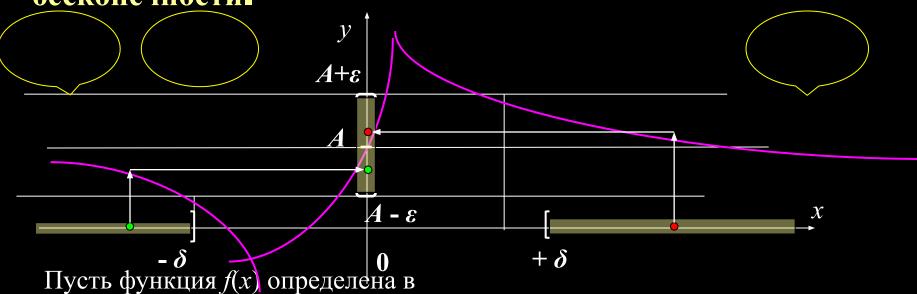
ПРИМЕР.



TEOPEMA.

Для существования необходимо и достаточно, чтобы существовали пределы этой функции в точке a слева и справа и

Пределы функции при стремлении аргумента к бесконечности.



Число A называется пределом функции f(x) при $x \to \infty$, если $\forall \varepsilon > 0 \exists \delta$ (ε)>0, такое что для всех x, удовлетворяющих неравенству $|x| > \delta$, выполняется неравенство

$$|f(x)-A|<\varepsilon.$$

В этом случае пишут

Бесконечно малые и бесконечно большие функции.

ОПРЕДЕЛЕНИЕ 1.

Функция $\alpha(x)$ называется *бесконечно малой* при стремлении аргумента x к точке a, если

т.е. для любого $\varepsilon > 0$ существует такая проколотая δ -окрестность точки a что для всех

ЗАМЕЧАНИЕ.

Пользуясь определением предела функции в точке a и определением бесконечно малой при $x \to a$ нетрудно показать, что

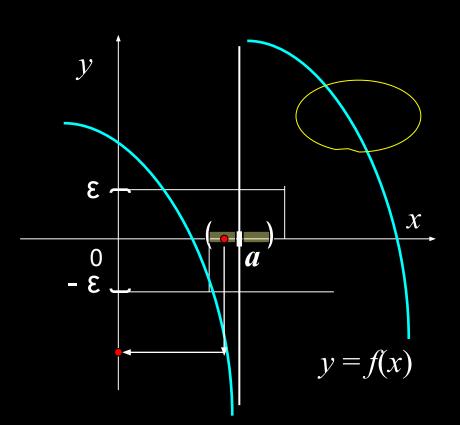
$$f(x) = A + \alpha(x)$$
, где $\alpha(x) \to 0$ при $x \to a$.

ОПРЕДЕЛЕНИЕ 2.

Функция f(x) называется *бесконечно большой* при стремлении аргумента x к точке a, если для любого $\varepsilon > 0$ существует такая проколотая δ - окрестность точки a что для всех

выполняется неравенство $|f(x)| > \varepsilon$.

В этом случае пишут



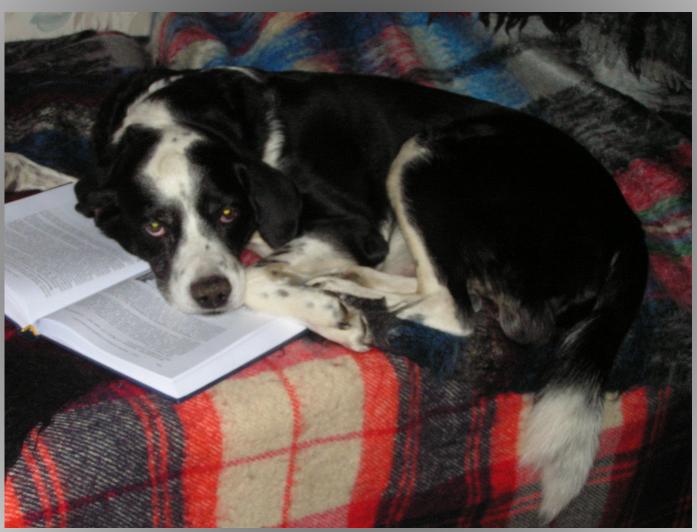
Аналогично определяются пределы

а также пределы

Свойства бесконечно малых и бесконечно больших функций.

- 1. Алгебраическая сумма конечного числа бесконечно малых при $x \to a$ функций есть бесконечно малая при $x \to a$ функция.
- 2. Произведение бесконечно малой при $x \to a$ функции на ограниченную функцию есть бесконечно малая при $x \to a$ функция.
- 3. Пусть $\alpha(x) \neq 0$ в
 - $\alpha(x)$ бесконечно малая при $x \to a$ функция тогда и только тогда, когда $1/\alpha(x)$ бесконечно большая при $x \to a$.

СПАСИБО ЗА ВНИМАНИЕ!



18