Лекция 2.2

• Свойства функций, имеющих предел.

• Асимптоты графика функции и методы их отыскания.

Свойства функций, имеющих предел.

TEOPEMA 1.

Если функция f(x) имеет предел в точке a, то найдется такая проколотая окрестность точки a, в которой функция ограничена.

ДОКАЗАТЕЛЬСТВО.

Пусть

Тогда, по определению предела, для $\varepsilon=1$ найдется такая проколотая δ -окрестность точки a , что для всех

выполняется неравенство

$$A - 1 < f(x) < A + 1$$
.

Это и означает ограниченность функции на множестве

TEOPEMA 2.

Если функция f(x) имеет в точке a предел, отличный от нуля, то найдется такая проколотая окрестность точки a, в которой функция сохраняет знак предела.

ДОКАЗАТЕЛЬСТВО.

Пусть

Тогда, по определению предела, для

найдется такая проколотая δ -окрестность точки a, что

Если A > 0, то из левого неравенства \Rightarrow

если A < 0, то из правого неравенства \Rightarrow

TEOPEMA 3.

Если $f(x) \ge 0$ в некоторой проколотой окрестности точки a и

to A ≥ 0.

ДОКАЗАТЕЛЬСТВО.

Воспользуемся определением предела по Гейне.

Возьмем числовую последовательность

сходящуюся к а.

Тогда

и
$$f(x_n) \ge 0$$
 для всех n .

Следовательно, по соответствующей теореме для числовых последовательностей, $A \geq 0$.

TEOPEMA **4.** (О двух милиционерах.)

Если в некоторой проколотой окрестности точки а справедливы

неравенства
$$f(x) \le g(x) \le \phi(x)$$

и существуют

TO

ДОКАЗАТЕЛЬСТВО.

Воспользуемся определением предела по Гейне. Возьмем

сходящуюся к а. Тогда

и $f(x_n) \le g(x_n) \le \phi(x_n)$ для всех n. Следовательно по теореме о двух

милиционерах для числовых последовательностей

т.е. существует

TEOPEMA 5.

- 1. Если f(x) = c постоянная в некоторой проколотой окрестности точки a, то
- 2. Если существуют

тогда существуют и

ДОКАЗАТЕЛЬСТВО.

1. Воспользуемся определением предела по Гейне. Возьмем ЧП

сходящуюся к
$$a$$
. Тогда $f(x_n) = c$ для всех n и

следовательно

2. Воспользуемся определением предела по Гейне. Возьмем ЧП

сходящуюся к а. Тогда

а) по теореме о пределе суммы для ЧП

то есть

СЛЕДСТВИЯ из теорем 3, 5.

1. Если $f(x) \ge B$ в некоторой проколотой окрестности точки a

И

то A ≥ B.

2. Если существует

то для любого числа C

Арифметика бесконечностей.

Введем обозначения:

- $C = const \neq 0$.
- ∞ бесконечно большая функция произвольного знака;
- $+ \infty$ бесконечно большая положительная функция;
- $-\infty$ бесконечно большая отрицательная функция;
- 0 бесконечно малая функция;
- 1 функция, предел которой равен 1.

Тогда имеют место следующие соотношения:

$$\mathbf{C} \cdot \mathbf{\infty} = \mathbf{\infty}$$

$$-$$
 C/0 = ∞

$$- C/\infty = 0$$

$$-+\infty+\infty=+\infty$$

$$-\infty-\infty=-\infty$$

■
$$(+\infty)^C = +\infty$$
, если C>0 (0, если C < 0)

$$(+\infty)_{+\infty} = +\infty$$

Неопределенные ситуации, требующие исследования.

- 0/0
- ullet $0 \cdot \infty$
- ∞/∞
- $\infty \infty$
- 1[∞]
- 00
- \bullet ∞^0

Асимптоты графика функции.

ОПРЕДЕЛЕНИЕ ВЕРТИКАЛЬНОЙ АСИМПТОТЫ.

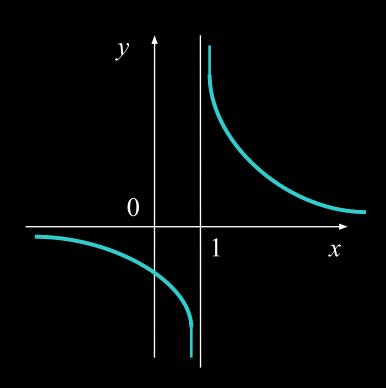
Прямая x = a называется вертикальной асимптотой графика функции f(x), если выполнено хотя бы одно из условий:

ПРИМЕР.

<u>Прямая x = 1 является вертикальной</u>

асимптотой графика функции

так как



ОПРЕДЕЛЕНИЕ НАКЛОННОЙ АСИМПТОТЫ.

Прямая y = kx + b называется наклонной асимптотой графика функции f(x) при $x \to +\infty$ (при $x \to -\infty$), если

СПОСОБ ОТЫСКАНИЯ НАКЛОННОЙ АСИМПТОТЫ. ТЕОРЕМА.

Прямая y = kx + b является наклонной асимптотой графика функции f(x) при $x \to +\infty$ (при $x \to -\infty$) тогда и только тогда, когда существуют конечные пределы

Доказательство.

1. Пусть

Тогда

$$f(x) - (kx + b) = \alpha(x),$$

где $\alpha(x)$ бесконечно малая при $x \to +\infty$. Отсюда получим, что

2. Пусть

Тогда

$$f(x) - (kx + b) = (f(x) - kx) - b = b + \alpha(x) - b = \alpha(x) \rightarrow 0 \text{ при}$$
$$x \rightarrow +\infty.$$

ЗАМЕЧАНИЕ.

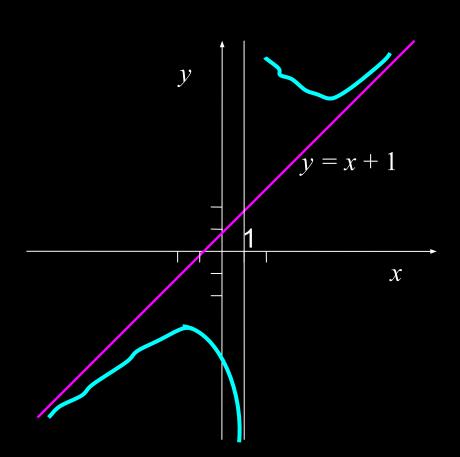
Для случая горизонтальной асимптоты теорема формулируется так:

Для того, чтобы прямая y = b была асимптотой графика функции f(x) при $x \to +\infty$, необходимо и достаточно, чтобы

ПРИМЕР.

Найдем наклонные асимптоты графика функции

Для этого вычислим необходимые пределы:



Аналогично при $x \rightarrow -\infty$.

СПАСИБО ЗА ВНИМАНИЕ!

