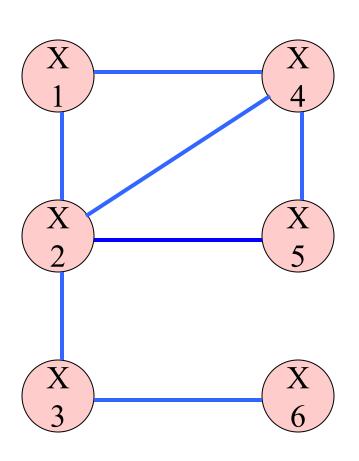
Пусть существуют несколько процессов, взаимодействующих по данным

Процесс	Данные
X1	A,C
X2	A,B,D,E
X3	B,F
X4	C,D
X5	D,E
X6	F


Как организовать их одновременную работу?

Чтобы найти процессы, конфликтующие по данным, построим граф.

Граф конфликтов: вершины – процессы, ребра общие данные.

ПРОЦЕСС	ДАННЫЕ	X
X1	A,C	
X2	A ,B,D,E	
X3	B,F	$\begin{pmatrix} X \\ 2 \end{pmatrix}$
X4	C,D	
X5	D,E	
X6	F	$\begin{bmatrix} X \\ 3 \end{bmatrix} \qquad \begin{bmatrix} X \\ 6 \end{bmatrix}$

Один из подходов к решению задачи — нахождение внутренне устойчивых множеств и раскраска графа конфликтов.

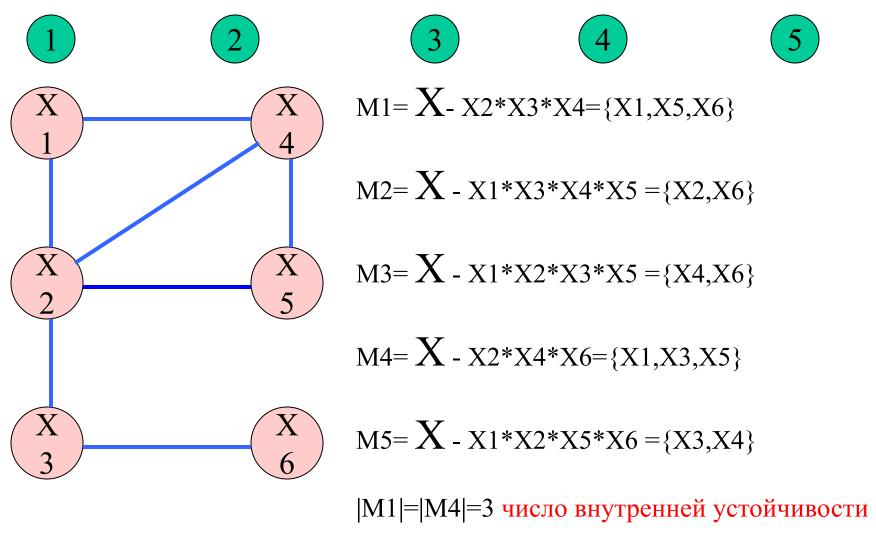
Внутренне устойчивое множество (ВУМ) — подмножество несвязанных вершин графа (не имеющих общих ребер).

Максимальное ВУМ — ВУМ, которое теряет свойство внутренней устойчивости при добавлении любой вершины из оставшихся. Для нахождения ВУМ воспользуемся алгоритмом Магу.

Запишем логическое выражение: в ВУМ может войти либо одна, либо другая вершина каждого ребра. Минимизируем это выражение. Если полученные множества вершин исключить из множества всех вершин графа, то останется ВУМ.

Алгоритм Магу

$$(X1+X2)(X2+X3)(X1+X4)(X2+X4)(X2+X5)(X4+X5)(X3+X6)=$$


$$(X2+X1*X3*X4*X5)(X4+X1*X5)(X3+X6)=$$

$$(X2*X4+X1*X3*X4*X5+X1*X2*X5+X1*X3*X4*X5)(X3+X6)=$$

$$(X2*X4+X1*X3*X4*X5+X1*X2*X5)(X3+X6)=$$

ВУМ

X2*X3*X4+ X1*X3*X4*X5+ X1*X2*X3*X5 + X2*X4*X6 + X1*X2*X5*X6

Входящие в ВУМ вершины не конфликтуют по данным!!!

Раскраска графа – алгоритм Зыкова

$$M1 = X - X2*X3*X4 = {X1, X5, X6}$$

$$M2= X - X1*X3*X4*X5 = \{X2,X6\}$$

$$M3 = X - X1*X2*X3*X5 = \{X4,X6\}$$

$$M4= X - X2*X4*X6={X1,X3,X5}$$

$$M5= X - X1*X2*X5*X6 = \{X3,X4\}$$

Раскрасить граф — поставить в соответствие каждой вершине графа некоторый цвет так, чтобы смежные вершины были окрашены в разные цвета.

Запишем логическое выражение: каждая вершина может быть окрашена в один из цветов (ВУМ). Минимизируем это выражение. Наименьшее количество цветов — хроматическое число графа.

M1*M2*M5+M2*M4*M5+M1*M2*M3*M4

(1)

2

3

Решение задачи

(M1+M4) *M2*(M4+M5) (M3+M5) (M1+M4) (M1+M2+M3)

M2*M4*M5	$\frac{M}{2}$	M 5
X1	M4	$\begin{array}{ c c c }\hline X \\ \hline 1 \\ \hline \end{array}$
X2	M2	
X3	М4 или М5	X
X4	M5	2 5
X5	M4	
X6	M2	$\frac{X}{3}$