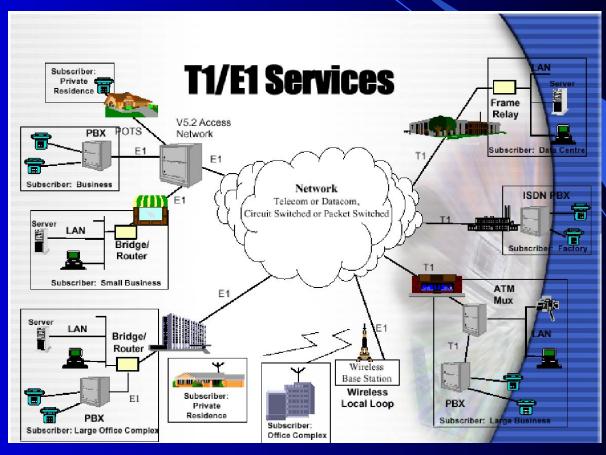
Мультиплексоры


Структура глобальной сети и ее базовые компоненты

Сеть состоит из абонентских узлов, физических линий для передачи данных, модемной аппаратуры, обеспечивающей передачу данных по физическим линиям и коммутационной аппаратуры.

Физические линии

могут использовать кабели из множества витых пар, коаксиальные провода, оптоволокно, радиорелейные линии и, наконец, спутниковые каналы. По сути, все они представляют среду для переноса данных

Структура глобальной компьютерной сети передачи данных

POTS

- [plain old telephone service] обычная телефонная сеть; простая старая телефонная система
- [point of termination station] телефонная станция.

PBX

сокр. от Private Branch eXchange телефонная система для частного пользования

Коммутационная аппаратура

обеспечивает важные функции в сетях – с ее помощью производится коммутация каналов и маршрутизация данных как между различными сегментами сетей, так и между абонентами.

Мультиплексор является одним из видов такого телекоммуникационного оборудования

Методы коммутации

в любой сети применяется какой-либо способ коммутации абонентов, который обеспечивает доступность имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами

Существуют три принципиально различные схемы коммутации абонентов в сетях:

- • Коммутация каналов
- Коммутация пакетов
- Коммутация сообщений

Сети с коммутацией каналов

ведут свое происхождение от первых телефонных сетей.

Именно их мы и будем рассматривать в настоящей лекции.

Как сети с коммутацией каналов, так и сети с коммутацией пакетов

можно разделить на два класса по другому признаку –

- на сети с динамической коммутацией и
- сети с постоянной коммутацией.

сети с динамической коммутацией

- сеть разрешает устанавливать соединение по инициативе пользователя на время сеанса.
- Соединение устанавливается пользователем

сети с постоянной коммутацией

- В сети позволяется заказать соединение на длительный период времени.
- Соединение устанавливается не пользователем, а персоналом, обслуживающим сеть.
- Время на которое устанавливается постоянная коммутация может исчисляется месяцами.

Режим постоянной коммутации

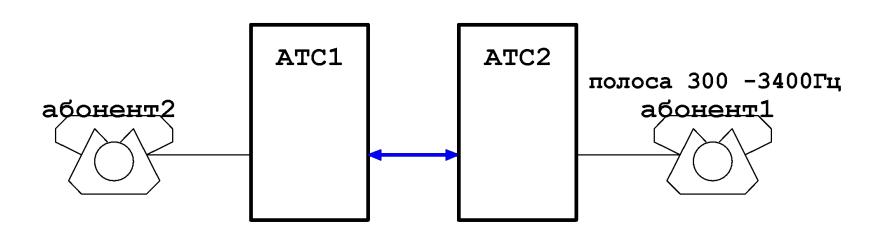
в сети с коммутацией каналов часто называется сервисом выделенных или арендуемых каналов.

Следующим важным понятием,

используемым при рассмотрении процессов передачи данных в глобальных сетях, является мультиплексирование или уплотнение данных

Мультиплексирование

процесс уплотнения и передачи двух или более сигналов (каналов) через один и тот же тракт(физическую линию) без взаимного влияния.


Это достигается

разделением сигналов во времени или по частоте, или с помощью кодирования сигнала таким образом, чтобы его мог принимать только назначенный получатель.

Мультиплексирование данных в телефонных сетях

Первые сети передачи данных использовались в телефонной связи. Для того, чтобы обеспечить трансляцию и переадресацию соединений абонентов от одной АТС на другую использовался принцип уплотнения каналов, так чтобы по одной сигнальной паре в кабеле, соединяющем две АТС, можно было передавать несколько телефонных каналов.

Структура телефонной сети

Частотный дипазон телефонного канала

ограничен в полосе 300—3400Гц. Для качественной передачи музыкального сигнала этой полосы явно не достаточно. Но для узнавания по тембру голоса абонента, а также для разборчивой передачи шипящих звуков - вполне достаточна.

Для оцифровки телефонного канала

по теореме Котельникова достаточно обеспечивать выборку на двойной максимальной частоте. Максимальная частота выбрана –4Кгц. В итоге получаем частоту дискретизации – 8Кгц.

Интервал дискретизации для 8кГц – период 125мкс.

- Каждый отсчет, производимый с частотой выборки, имеет разрядность 8бит
- Если использовать обычный 8-ми разрядный АЦП с равномерным поразрядным кодированием, то качество восстановленного сигнала будет неудовлетворительное.
- Расширение разрядной сетки АЦП до 12-13 разрядов для получения нормального качества речи приводит к расширению полосы.

Логарифмирование

при использовании тех же 8 разрядов позволяет обеспечить субъективное качество на уровне 12-13 разрядного линейного кодирования

Кривая логарифмической функции

выбрана специальной формы и учитывает специфику речевого сигнала. Функция получена экспериментальным путем и ее параметры жестко регламентированы в соответствующих документах ITU-T

существуют две практически равноценные логарифмические функции

- A law в Европе и
- mu –law в Америке

В итоге получаем частотную полосу

для последовательного цифрового сигнала, который способен адекватно переносить телефонный спектр от 300 до 3400ГЦ ->

8кГц х 8бит = 64 кбит\с

ВСША

используется полоса 56Кбит\с - из полосы 64 кбит\с можно украсть еще 8кбит\с незаметно для уха, а съэкономленные биты использовать для организации служебного канала

Уплотнение с частотным разделением каналов FDM

Метод уплотнения с частотным разделением каналов (FDM –frequency division multiplexing) широко использовался для аналоговых магистральных линий.

Уплотнение с частотным разделением каналов -

первичная группа каналов была регламентирована ITU-Т и состоит из двенадцати каналов с полосой 4КГц каждый

В качестве несущей

для каждого канала использовались 12 кварцевых генераторов стабильной частоты, разнесенных друг от друга на 4КГц.

Первичная группа каналов FDM

Сигналы в каждом канале

модулированы по амплитуде.

- Весь сигнал первичной группы занимает полосу 60 –108 КГц.
- Этот диапазон выбран потому, что в этой полосе кабель имеет почти плоскую АЧХ

Недостатки системы FDM

- высокая стоимость и сложность аппаратуры,
- малая помехоустойчивость,
- междуканальные помехи (прослушивание переговоров по соседним каналам),
- недостаточное использование рабочей частотной полосы кабеля.

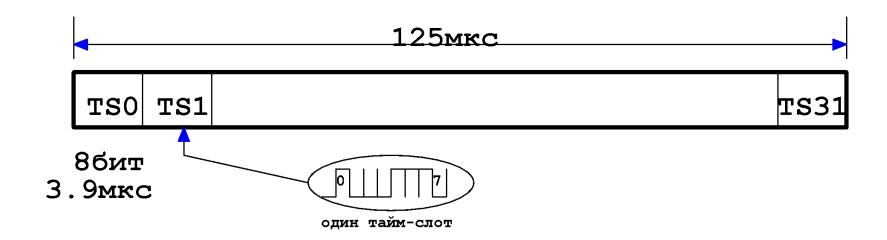
Несмотря на недостатки, аппаратура с частотным уплотнением до сих пор используется не только в нашей стране, но и за рубежом.

интерфейс V.35

впервые был рекомендован для использования в FDM модемах. Сами FDM модемы были в дальнейшем вытеснены TDM модемами, а интерфейс V.35 остался и долгое время считается стандартным цифровым интерфейсом для большинства видов телекоммуникационного оборудования

Уплотнение с временным разделением цифровых каналов 64 кбит\с TDM

Для того, чтобы не было потерь при передаче цифровых сигналов, период кадра мультиплексирования был выбран равным периоду квантования — 125 мкс


При использовании тактовой частоты 2048КГц

- в данном временном промежутке можно уложить 32 канала.
- В системе с временным употнением телефонных каналов используются временные тайм-слоты (TS –time slots) или каналы с нумерацией от TS0 до TS31.

Не все каналы служат для передачи информации телефонных каналов.

Необходимы служебные метки для синхронизации начала кадра. Эта метка расположена в нулевом таймслоте и содержит специальные кодовые комбинации, которые используются в приемнике для обнаружения и идентификации начала кадра.

Структура кадра Е1

Мультиплексоры

Мультиплексоры являются одним из видов связной аппаратуры, предназначенной для образования высокоскоростных цифровых каналов при построении глобальных компьютерных сетей.

Появление и эволюция мультиплексоров

- Цифровая аппаратура мультиплексирования и коммутации была разработана в конце 60-х годов компанией АТ&Т для решения проблемы связи крупных коммутаторов телефонных сетей между собой.
- Каналы с частотным уплотнением, применяемые до этого на участках АТС-АТС, исчерпали свои возможности по организации высокоскоростной многоканальной связи по одному кабелю.

появилась новая технология -

работающая на принципе разделения канала по времени - TDM.

- Физический уровень международного варианта технологии определяется стандартом G.703, названием которого обозначается тип интерфейса подключаемого к каналу E1.
- Американский вариант интерфейса носит название Т1.

С одной стороны

мультиплексор имеет модемный интерфейс (канал Е1, один и более) предназначенный для передачи данных на значительные расстояния, от 1.5 до 2.0 км, а с другой - в нем имеются пользовательские интерфейсы для подключения терминального оборудования.

Терминальное оборудование

- делит между собой полосу пропускания линейного интерфейса.
- Такой канал называется дробным (fractional) каналом Е1 (Т1).
- Пользователю каждого терминального оборудования может отводится определенное число тайм-слотов линейного канала мультиплексора.
- Аппаратура канала, образуемая мультиплексорами абсолютна прозрачна для пользователя.

В первое время мультиплексоры

образовывали составные каналы на долговременной основе, и пользователь мог арендовать несколько каналов 64Кбит\с (56кбит\с) в канале E1(T1).

При этом абонент не мог влиять на процесс коммутации этого канала.

Гибкие мультиплексоры

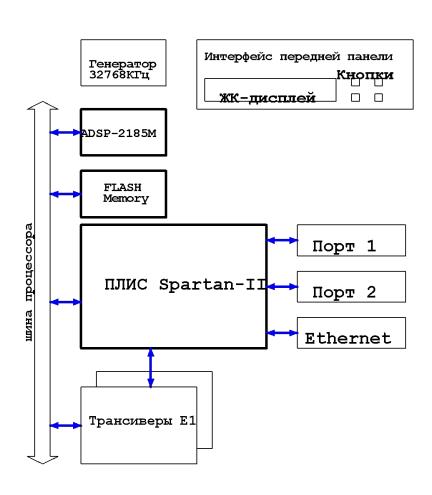
В дальнейшем были разработаны

мультиплексоры, которые обеспечивали гибкую схему мультиплексирования потоков с разными скоростями, позволяющие вставлять (insert) и извлекать (drop) пользовательскую информацию для любого уровня скорости, не демультиплексируя весь поток.

Современные мультиплексоры

способны принимать данные от нескольких терминальных устройств, каждое из которых может передавать данные на разных скоростях.

При этом потоки могут быть как синхронными, так и асинхронными.

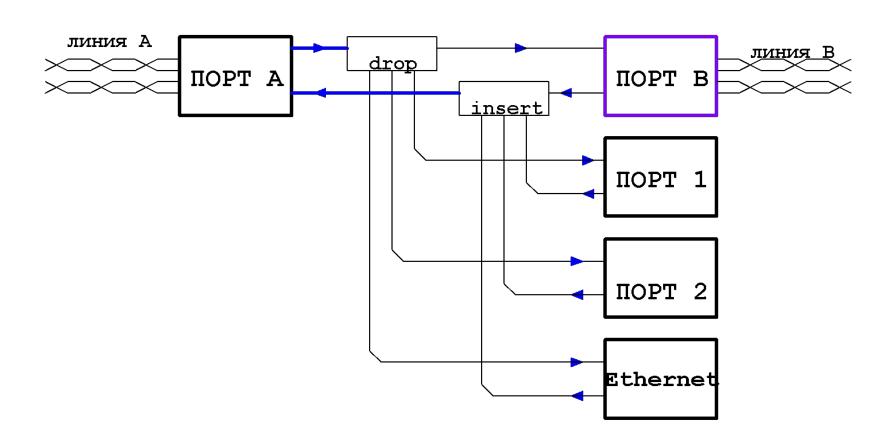

В качестве терминального оборудования

к мультиплексору могут быть подключены:

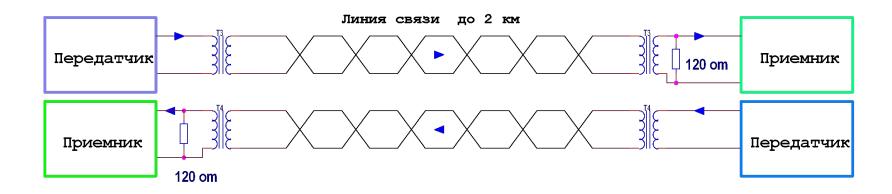
- персональный компьютер,
- маршрутизатор,
- телефонный FXS или FXO канал, а также
- мост для локальной сети Ethernet.
 Подключение терминального оборудования производится через цифровые интерфейсы мультиплексора.

Гибкий мультиплексор ГМ-2 фирмы «ЗЕЛОС»

Архитектура гибкого мультиплексора ГМ-2


Мультиплексор ГМ-2 обеспечивает:

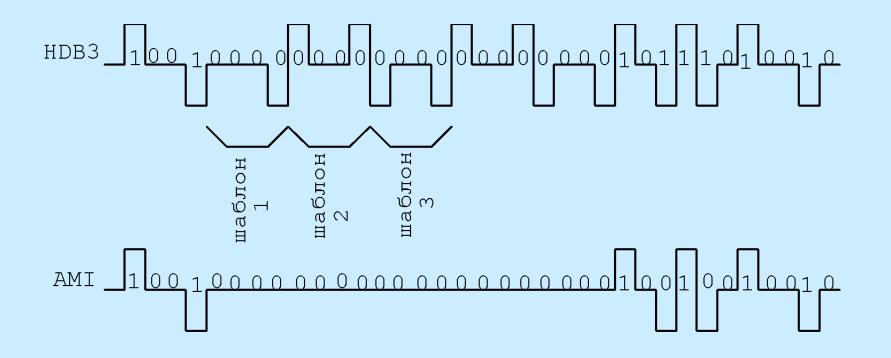
коммутацию между последовательными потоками данных как в синхронном, так и в асинхронном режимах для различных физических интерфейсов


в том числе:

- выделение и вставку тайм-слотов n x 64 кбит из потока E1 2048 кбит/с в цифровой канал 64 .. 1984 кбит/с (порт 1),
- взаимную переадресацию тайм-слотов 64 кбит/с между двумя потоками данных Е1 (кросс коннект),
- режим инверсного мультиплексора для транспортировки битовых потоков со скоростями до 3968 кбит\с,
- трансляцию выделенных тайм-слотов через UTP Ethernet Bridge 10Мбит\с
- трансляцию выделенных тайм-слотов из потоков 2048 кбит/с в асинхронный канал порта 2.

Структура потоков данных в мультиплексоре ГМ-2

Физический уровень Е1


Физическая линия Е1 – дуплексная и симметричная. Оба канала идентичны и полностью независимы. Скорости передачи по каждой паре – одинаковы 2048кбит\с.

Методы кодирования линейных сигналов АМІ и HDB3

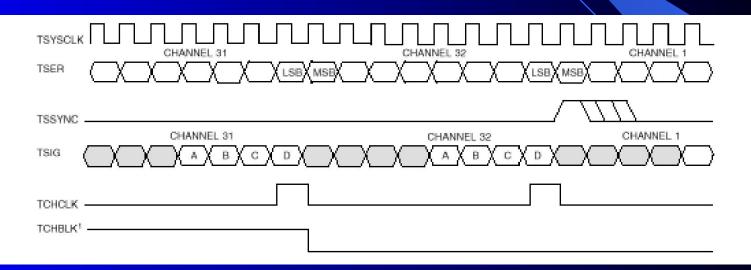
Для кодирования линейных сигналов в тракте сопряжения Е1 использу.тся биполярные коды

- AMI (Alternate Mark Inversion попеременная инверсия сигнала Лог.1 при передаче) или
- HDB3(High Density Bipolar 3).

Временные диаграммы линейного кодирования HDB3 и AMI

В отличие от кодеров и декодеров АМІ,

в которых кодирование производится «на лету», для реализации процессов кодирования и декодирования HDB3 кода используется временная задержка на 4 разряда данных.


последовательные потоки данных

приемника (передатчика) проходят через последовательный буфер на 4 разряда, дешифратором с параллельных выходов буфера выделяются коды, подлежащие подмене. При подмене учитывается предыстория процесса. В выходной 4-х разрядный регистр переписывается или код оригинала, или шаблон подмены.

Основные положения стандарта сопряжения Е1

Передача информации в соответствии со стандартом Е1 базируется на определенной системе временного разделения последовательного битового потока для передачи служебной информации и данных.

Временные диграммы передатчика трансивера Е1

Основной фрейм стандарта Е1

- имеет длину 256 бит и передается с частотой 8Кгц.
- Суммарная скорость передачи -2048Кбит\сек.
- разделяется на 32 канальных временных интервала с номерами от 0 до 31.
- Длина каждого временного интервала составляет 8 бит, при этом старший разряд передается первым.
- Одному временному интервалу (тайм слоту) соответствует скорость передачи 64 Кбит/с.

Нулевой временной интервал тракта Е1

- отводится для синхронизации (синфазирования) основного фрейма и мультифрейма, а также для передачи информации, связанной с техническим обслуживанием канала.
- Временной интервал 16 выделяется для сигнализации.
- Остальные 30 временных интервалов называются каналами и используются для передачи ИКМ разговорных или цифровых данных.

Синхронизация и синфазирование основного фрейма

- Нулевой временной интервал каждого основного фрейма выделяется для кадровой синхронизации и мультикадрового фазирования.
- В позиции нулевого интервала поочередно передается или сигнал фреймовой синхронизации (FAS = Frame Alignment Signal), или сигнал нефреймовой синхронизации (NFAS = Non-Frame Alignment Signal).

Схема защиты линейных цепей тракта

E1

В соответствии с рекомендациями ETS 300 046-3 и ITU K17-K20 входные цепи интерфейса Е1 должны содержать элементы защиты, гарантирующие безопасную и надежную работу оборудования при возникновении перенапряжения в линейном кабеле из-за короткого замыкания с сетевым кабелем, или в результате воздействия ударов молнии.

Первой ступенью защиты

является использование предохранительных резисторов с положительным температурным коэффициентом (Р позисторов. Резисторы, стоящие последовательно в каждой входной линейной цепи приемника и передатчика, обеспечивают ограничение тока при возникновении перенапряжения в этих цепях в результате замыкания сигнальных линий интерфейсного кабеля и сетевого кабеля.

Сопротивление предохранительных резисторов

в нормальном состоянии составляет от 4 до 7 Ом. При увеличении напряжения происходит нагрев резистора и резко возрастает его сопротивление, которое и ограничивает ток проходящий во входных цепях интерфейса.

Наличие такой защиты обусловлено требованиями

- Bellcore 1089,
- FCC Part 68 и
- UL1489 для телекоммуникационной аппаратуры.

Следующий защитный элемент -

газовый разрядник. Он предназначен для защиты входных цепей интерфейса от пробоя, который может произойти из-за повышенной разницы потенциалов между проводами кабеля и вторичными цепями интерфейса, развязанных от <mark>линии через изолирующий</mark> трансформатор.

Газоразрядный предохранитель

имеет напряжение пробоя 70 - 90 В. Газоразрядник обеспечивает достаточное быстродействие и выдерживает токовую перегрузку.

Следующая ступень защиты -

быстродействующие ограничители напряжения на входных обмотках изолирующего трансформатора. В мультиплексоре используются твердотельные защитные элементы - TVS - диодные структуры.

Принцип действия такого прибора

аналогичен работе тиристора. Напряжение пробоя структуры -6В. Прибор неполярный и позволяет ограничивать напряжение импульсных помех любой полярности. Структура TVS -диода имеет достаточно малую емкость - не более 50 пФ, что обеспечивает отсутствие искажения полезного сигнала.

Последний элемент защиты в системе-

защита от перенапряжения цепей питания микросхемы трансивера.