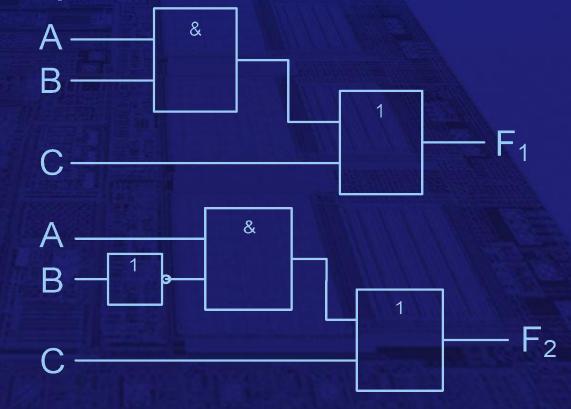


Цели и задачи


- Применение ранее изученных знаний:
 - булева алгебра,
 - логические вентили
 для проектирования несложных комбинационных схем.
- Минимизация (упрощение)
 комбинационных схем с помощью
 упрощения логических выражений и карт
 Карно

Комбинационные схемы

• Любую комбинационную схему можно представить в виде выражения булевой алгебры и наоборот:

•
$$F_1 = A + BC$$

•
$$F_2 = A + \overline{B}C$$

Комбинационные схемы

Α	В	С	AB + C
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
6/1	1/	0	1
1	1	1	1

$$F_1 = A + BC = \overline{ABC} + \overline{AB$$

Запись логических выражений

$$F = A\overline{B} + \overline{A}B\overline{C} + AC$$

ABC	out	минтерм	макстерм
000	1	ABC -	A+B+C
0 0 1	0	ABC_	A+B+C
010	1	ABC _	A+B+C
011	1	AB C	A+B+C
100	0	ABC	A+B+C
101	1	ABC ⁻	A+B+C -
110	0	ABC -	A+B+C
111	0	ABC	A+B+C

Дизъюнктивная форма записи логических выражений

F (A, B, C) =
$$\overrightarrow{ABC}$$
 + \overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{ABC} = Σ (0,2,3,5)

дизъюнкция

(сумма произведений, sum-of-products)

Дизъюнктивная форма записи логических выражений

Дизъюнктивная нормальная форма (ДНФ):

 $F(A, B, C) = A\overline{B} + \overline{A}B\overline{C} + AC$

Совершенная дизъюнктивная нормальная форма (СДНФ): F (A, B, C) = ABC + ABC + ABC + ABC

Дизъюнктивная форма записи логических выражений

$$F(A, B, C) = (\overline{A}+B+\overline{C})(A+\overline{B})(A+C)$$
 $F(A, B, C) = Makcтермы$
 $= (\overline{A}+B+C)(A+B+C)(A+B+C) = (\overline{A}+B+C)(A+B+C)$

= П (2,5,6) конъюнкция (произведение сумм, product-of-sums)

Конъюнктивная форма записи логических выражений

Конъюнктивная нормальная форма (КНФ):

$$F(A, B, C) = (\overline{A} + B + \overline{C})(A + \overline{B})(A + C)$$

Совершенная конъюнктивная нормальная форма (СКНФ):

$$F(A,B,C) = (\overline{A} + \overline{B} + \overline{C})(A + \overline{B} + C)(A + B + C)$$

Пример перехода от ДНФ к СДНФ

$$F(A,B,C) = A\overline{B} + \overline{A}C + A\overline{B}C =$$

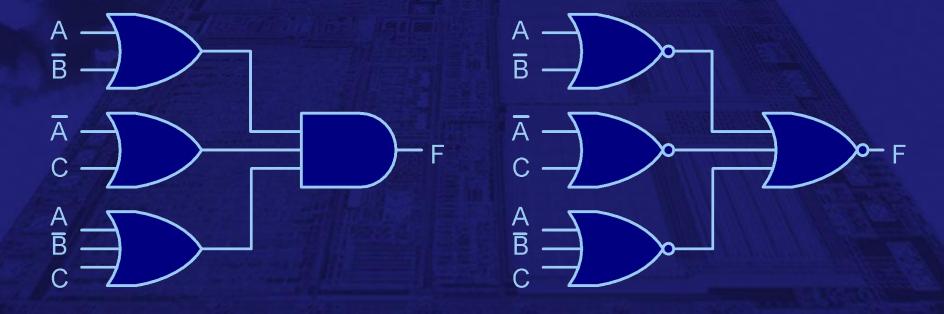
$$=A\overline{B}(A+\overline{A})+\overline{A}C(B+\overline{B})+A\overline{B}C=$$

$$=A\overline{B}C+A\overline{B}\overline{C}+\overline{A}BC+\overline{A}\overline{B}C+A\overline{B}C=$$

$$=A\overline{B}C+A\overline{B}\overline{C}+\overline{A}BC+\overline{A}\overline{B}C$$

Применение правила де Моргана

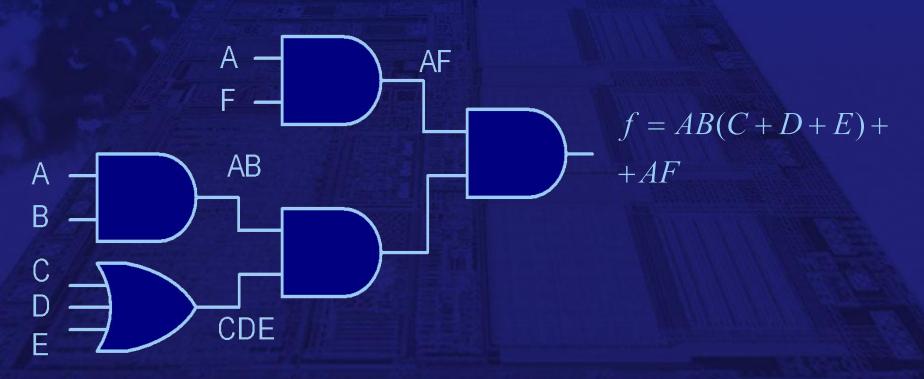
$$F(A,B,C) = A\overline{B} + \overline{A}C + A\overline{B}C =$$


$$= \overline{A}\overline{B} + \overline{A}C + A\overline{B}C = (\overline{A}\overline{B})(\overline{A}C)(\overline{A}\overline{B}C)$$

$$\stackrel{A}{=} \qquad \stackrel{A}{=} \qquad \stackrel{A$$

Применение правила де Моргана

$$F(A,B,C) = (A+\overline{B})(\overline{A}+C)(A\overline{B}C) =$$


$$= \overline{(\overline{A} + \overline{B})(\overline{A} + C)(\overline{A} + \overline{B} + C)} = \overline{(\overline{A} + \overline{B})} + (\overline{\overline{A}} + \overline{C}) + (\overline{A} + \overline{B} + \overline{C})$$

Многоуровневые схемы

$$f = ABC + ABD + ABE + AF =$$

$$= AB(C + D + E) + AF$$

Алгебраическое упрощение булевых выражений

- Группировка членов с последующим применением тождеств
- Приведение выражения в каноническую форму с последующим упрощением
- Использование теоремы де Моргана

Группировка членов

- Закон ассоциативности.
- Сокращение выражений за счет использования тождеств.
- Один член можно использовать для группирования несколько раз.
- $A + \overline{A}B = A + B$
- Теорема о непротиворечивости (Consensus Theorem):
 - $AB + \overline{A}C + BC = AB + \overline{A}B$
 - $\overline{A} = (A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+B)$

Группировка членов

$$F(A,B,C) = A + A\overline{C} + ABC =$$

$$= A(1 + \overline{C} + BC) = A.$$

$$F(A,B,C) = A + \overline{B} + \overline{A}BCD =$$

$$= (A + \overline{A}BCD) + \overline{B} =$$

$$= A + (BCD + \overline{B}) = A + CD + \overline{B}.$$

Приведение в СДНФ или СКНФ

- Умножение на множители типа $(A + \overline{A})$
- Перегруппировка с целью получения упрощенного выражения
- Для упрощения выражений в конъюнктивной форме необходимо преобразовать по теореме де Моргана, получить инверсную дизъюнктивную функцию упростить ее по известным правилам.

Приведение в СДНФ или СКНФ

$$f(A,B,C) = A\overline{B} + AB\overline{C} + \overline{A}B\overline{C} + \overline{A}BC =$$

$$= A\overline{B}(C + \overline{C}) + AB\overline{C} + \overline{A}B\overline{C} + \overline{A}BC =$$

$$= A\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} + \overline{A}B\overline{C} + \overline{A}BC =$$

$$= A\overline{B}(C + \overline{C}) + A\overline{C}(B + \overline{B}) + \overline{A}B(C + \overline{C}) =$$

$$= A\overline{B}(C + \overline{C}) + A\overline{C}(B + \overline{B}) + \overline{A}B(C + \overline{C}) =$$

$$= A\overline{B} + A\overline{C} + \overline{A}B.$$

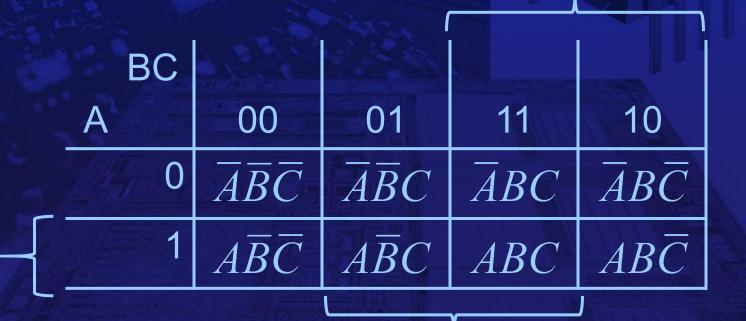
Использование теоремы де Моргана

$$f(A,B,C) = (ABD + \overline{BCD})\overline{BC} + \overline{AC} =$$

$$= \overline{(ABD + B\overline{C}D)BC}\overline{(AC)} = \overline{(ABD + B\overline{C}D)} + \overline{BC}\overline{(A+C)} =$$

$$= \overline{(ABD)(BCD)} + \overline{B} + C\overline{(A+C)} =$$

$$= \overline{(A+B+D)(BCD)} + \overline{B} + C\overline{(A+C)} =$$

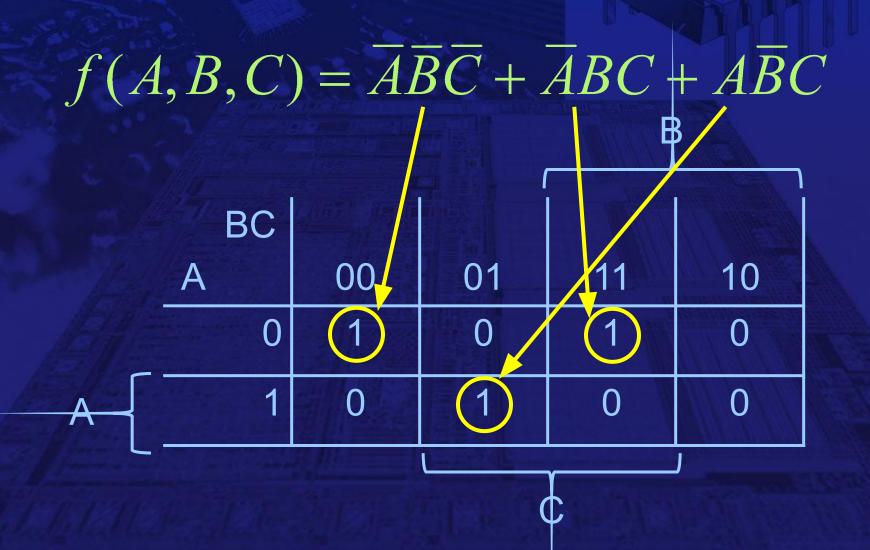

$$= \overline{(ABCD + B+C)(A+C)} =$$

$$= \overline{(ABCD + B+C)(A+C)} =$$

$$= AB + AC + \overline{ABCD} + BC + \overline{C} =$$

$$= AB + \overline{C}(A+\overline{ABC}+B+1) = AB + \overline{C}.$$

Минимизация логических функций с помощью карт Карно


• Код Грея: 00, 01, 11, 10

Минимизация логических функций с помощью карт Карно

AB				
C	00	01	11	10
0	$\overline{A}\overline{B}\overline{C}$	$\overline{A}B\overline{C}$	$AB\overline{C}$	$A\overline{B}\overline{C}$
A 1	$\overline{A}\overline{B}C$	$\overline{A}BC$	ABC	$A\overline{B}C$
A CONTRACTOR OF THE PARTY OF TH	11	三级流		J

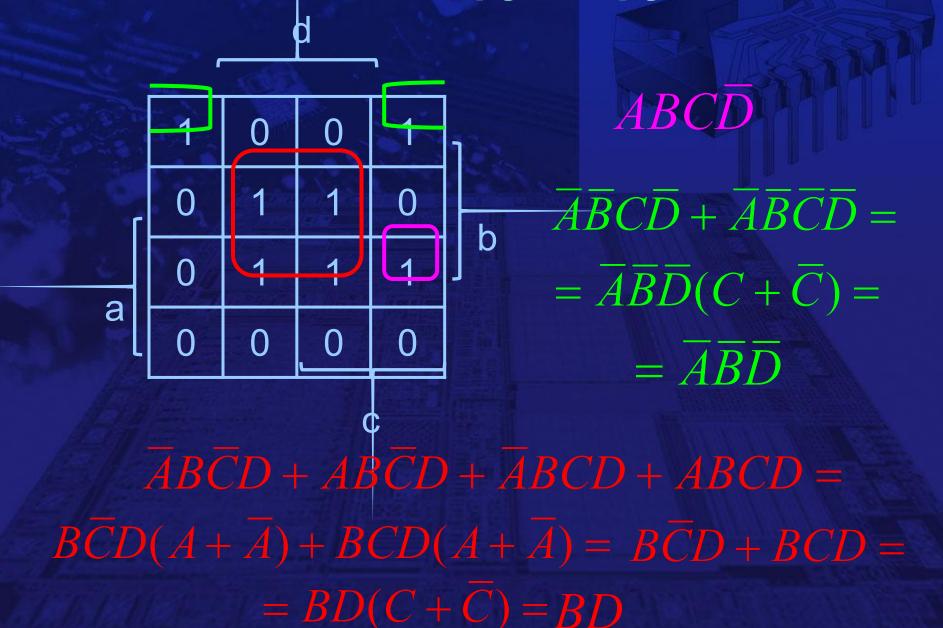
• Альтернативный способ обозначения клеток карты Карно

Представление логической функции с помощью карты Карно

Алгоритм минимизации логических функций с помощью карт Карно

- Заполнить карту Карно.
- Объединить все рядом лежащие «1»-цы в группы (кубы) наибольшего размера.
 Размер куба может быть только 2ⁿ, где n=0,1,2,3....
- Записать все новые минтермы, соответствующие выделенным группам (кубам).
- Записать минимизированную функцию равную логической сумме полученных минтермов.

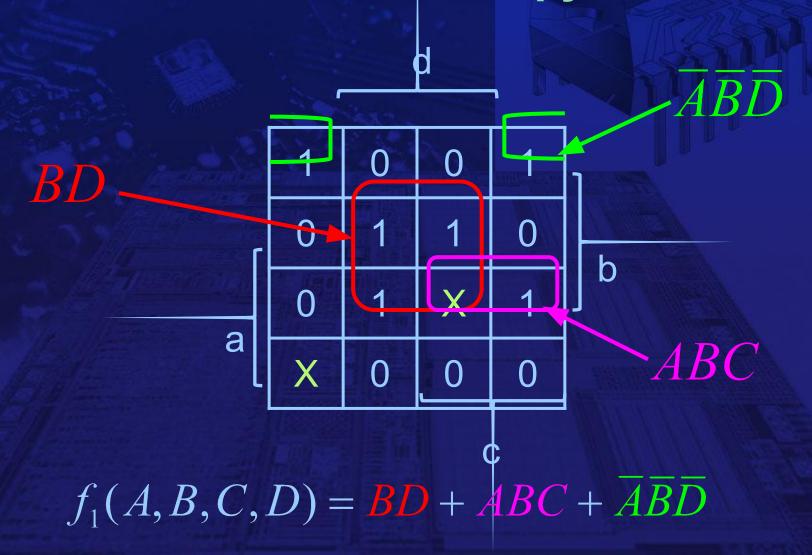
Порядок заполнения карт Карно

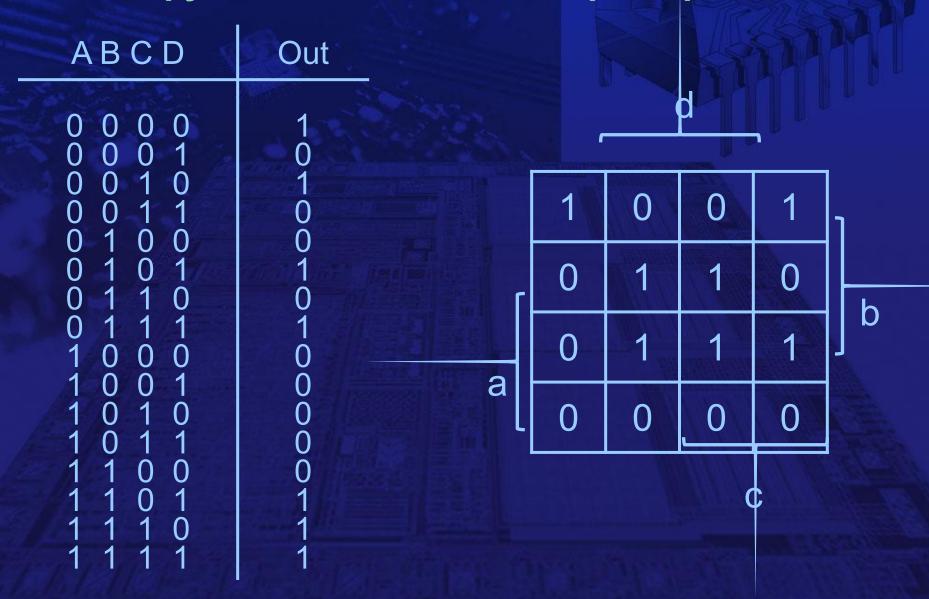

0	- 1	3	2
000	001	011	010
4	5	7	6
100	101	111	110

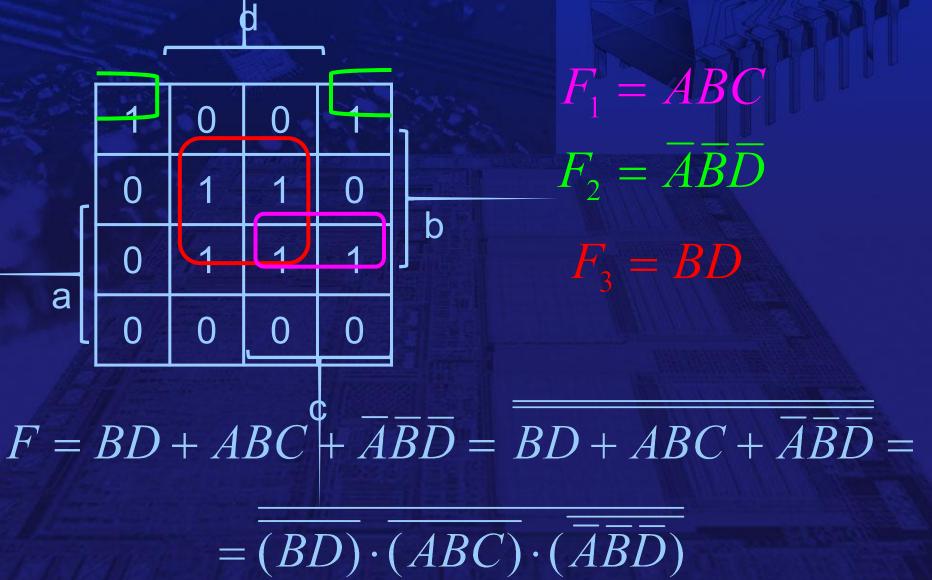
Карта Карно для логической функции с 4-мя переменными (A,B,C,D)

Карта Карно для логической функции с 3-мя переменными (A,B,C)

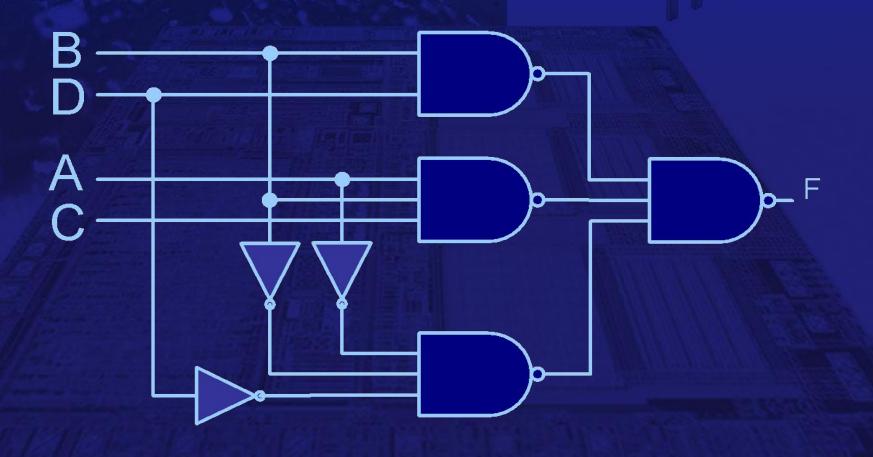
0	1	3	2
0000	0001	0011	0010
4	5	7	6
0100	0101	0111	0110
12	13	15	14
1100	1101	1111	1110
8	9	11	10
1000	1001	1011	1010


С какой целью группируются «1»?


Примеры заполнения и группирования карт Карно


Неполно заданные функции

Решение задачи «Минимизация логической функции с помощью карт Карно»



Решение задачи «Минимизация логической функции с помощью карт Карно»

Решение задачи «Минимизация логической функции с помощью карт Карно»

$$F = \overline{(BD)} \cdot \overline{(ABC)} \cdot \overline{(\overline{A}\overline{B}\overline{D})}$$

Итоги:

В ходе лекции изучены:

- Представление логических функций в виде:
 - выражений булевой алгебры
 - логических схем
 - карт Карно
- Упрощение булевых выражений
 - с использованием алгебраических методов
 - с использованием карт Карно