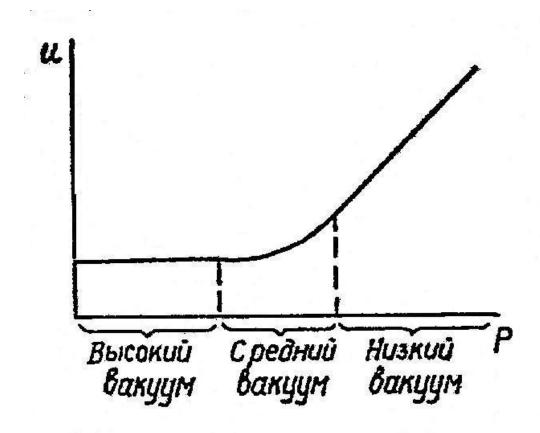
ЛЕКЦИЯ 16


Элементы вакуумной техники.

Проводимость вакуумных систем

Зависимость проводимости вакуумных систем от степени вакуума

Проводимость вакуумных систем

пени вакуума

Режимы течения газа в зависимости от степени вакуума

Режим	Граница	
	верхняя	Р Р Р Р Р Р Р Р Р Р
Вязкостный	Атмосферное давление	$K_n \le 5 \cdot 10^{-3}$
Молекулярно- вязкостный	$K_n > 5 \cdot 10^{-3}$	$K_n \leq 1,5$
Молекулярный	$K_n > 1,5$	$K_n \to \infty$

Примечание: K_n – параметр Кнудсена.

Проводимость вакуумных систем

Расчет проводимости системы

Вид элемента системы	Вязкостный режим	Молекулярный режим
Круглое отверстие диаметром d , м	$U = 160d^2$ при $p_2/p_1 \le 0,1$	$U = 91d^2$
Отверстие произвольной формы площадью A , M^2	$U=200 A$ при $p_{_2}/p_{_1} \le 0,1$	U = 116A
Трубопровод диаметром d и длиной l , м	$U = 1,36 \cdot 10^3 \frac{d^4}{l} p_{cp}$	$U = 121 \frac{d^3}{l}$

Примечание: $U[M^3/c]; p[\Pi a]; T = 293K$

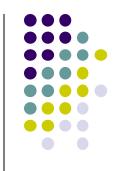
Основные параметры насосов

$$S_n$$
 - быстрота действия;

$$P_{np}$$
 - предельное давление ();

$$\mathcal{P}_{\scriptscriptstyle M}$$
 - наименьшее рабочее давление ();

$$p_{\sigma}$$
 - наибольшее рабочее давление ();


$$p_{_{3}}\;$$
 - наибольшее давление запуска ();

$$p_{\scriptscriptstyle R}~$$
 - наибольшее выпускное давление ().

Быстрота действия насоса – это объем газа, удаляемый насосом в единицу времени через входной патрубок насоса

$$S = \frac{dV}{dt}$$

Зависимость быстроты действия насоса от давления газа на входе в насос

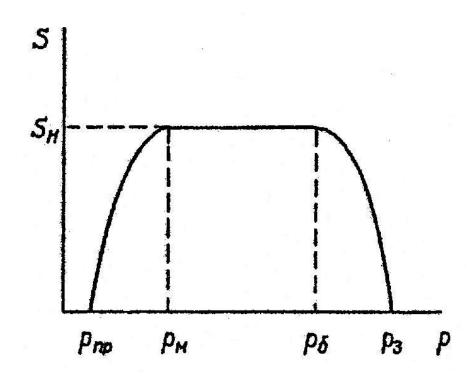


Схема пластинчато-роторного насоса

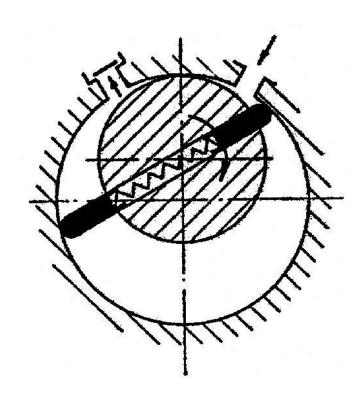
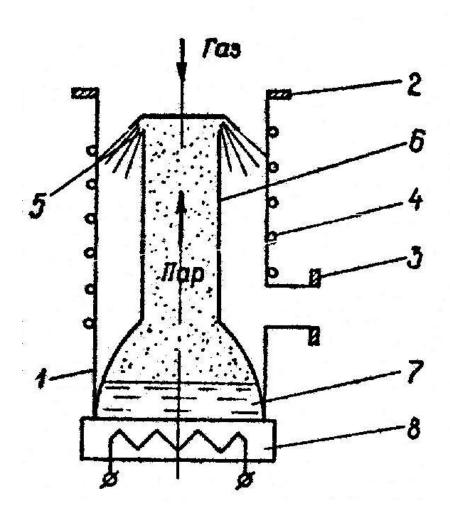
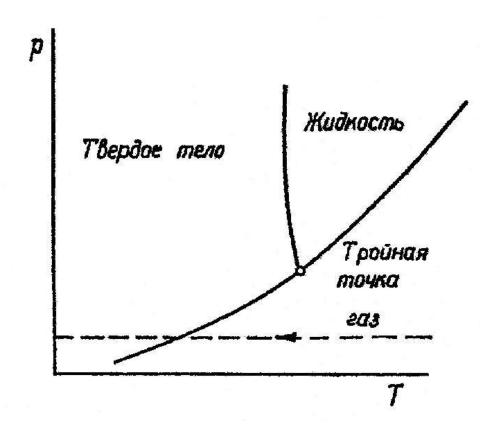
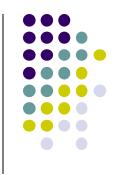
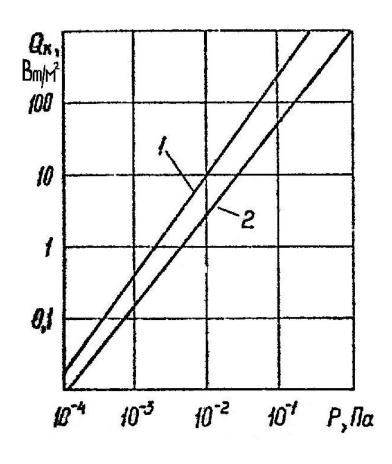
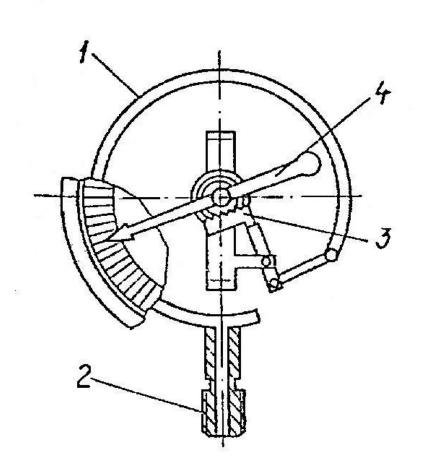



Схема диффузионного (паромасляного) насоса

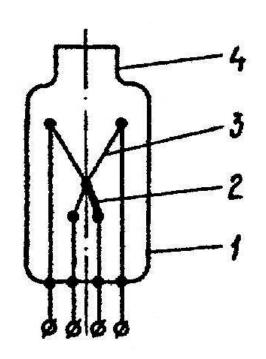



- 1 корпус
- 2 входной патрубок
- 3 выходной патрубок
- 4 охладитель
- 5 сопло
- 6 паропроводе
- 7 рабочая жидкость
- 8 нагреватель


Криоконденсационные насосы

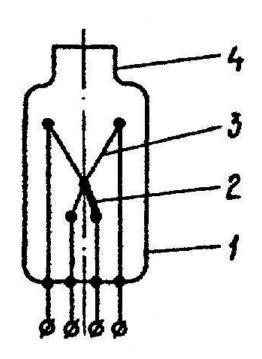

Криоконденсационные насосы. Оценка дополнительной тепловой нагрузки.

Трубка Бурдона.



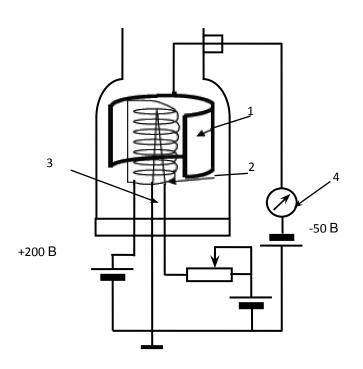
- 1 спиральная трубка
- 2 штуцер
- 3 -зубчатый сектор
- 4 -стрелка

Тепловые преобразователи



- 1 баллон
- 2 термопара
- 3 металлическая нить
- 4 патрубок

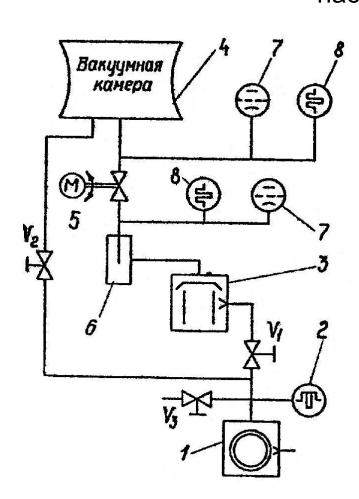
Тепловые преобразователи



- 1 баллон
- 2 термопара
- 3 металлическая нить
- 4 патрубок

Ионизационные преобразователи





- 1 коллектор ионов
- 2 анодная сетка
- 3 прямоканальный катод
- 4 микроамперметр

Схемы откачки

Вакуумная система из диффузионного и форвакуумного насосов

- 1 форвакуумный насос
- 2 тепловой преобразователь
- 3 диффузионный насос
- 4 вакуумная камера
- 5 затвор
- 6 азотная ловушка
- 7 ионизационный преобразователь
- 8 тепловые преобразователи