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DIGITAL VERSUS ANALOG FILTERING

DIGITAL FILTERS

ANALOG FILTERS

High Accuracy

Linear Phase (FIR Filters)

No Drift Due to Component
Variations

Flexible, Adaptive Filtering Possible
Easy to Simulate and Design
Computation Must be Completed in
Sampling Period - Limits Real Time

Operation

Requires High Performance ADC,
DAC & DSP

Less Accuracy - Component
Tolerances

Non-Linear Phase

Drift Due to Component
Variations

Adaptive Filters Difficult
Difficult to Simulate and Design
Analog Filters Required at
High Frequencies and for

Anti-Aliasing Filters

No ADC, DAC, or DSP Required
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N-TAP FINITE IMPULSE RESPONSE (FIR) FILTER

X(n) X(n=1) X(n=N+2) X(n=N+1)
O 7zl —@ - 7-1 $ Z-1
h(o) /N h(1) /'~ \l h(N-2) /- '—'\‘ hiN-1)/~_
) ) mal) )

N

N-1

B y(n) = hin)* x(n) =X h(k) x(n -k

k=

0

B #* =Symbol for Convolution

B Requires N multiply-accumulates for each output



SIMPLIFIED FILTER NOTATIONS

X(n) X(n-1 X(n-N+2) X(n-N+1)
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FIR FILTER IMPULSE RESPONSE
DETERMINES THE FILTER COEFFICIENTS
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DUALITY OF TIME AND FREQUENCY

TIME DOMAIN
Xx(n)
INPUT t
FILTER / h(m)
RESPONSE
o P t
\V4
x(n) * h(m)
OUTPUT t

\/

FREQUENCY DOMAIN

t XK

TTff

H(k)

o\

A X(k)* H(k)




FIR FILTER DESIGN USING
THE WINDOWED-SINC METHOD

Ideal Lowpass Filter Ideal Lowpass Filter Truncated
Frequency Response Impulse Response Impulse Response

(A) sin x / \ (B) / \(C)
X

(sinc function)

LR N J L N N
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f f t t
= +«— N
Window Windowed Final Filter
Function Impulse Response Frequency Response
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BANDPASS AND BANDSTOP FILTERS
DESIGNED FROM LOWPASS AND HIGHPASS FILTERS

x(n) y(n) Xx(n) y(n)
—* hy(k) * hy(k) —* —* hy(k) * hy(k) —>
\ / /_\ * = Convolution

Lowpass Highpass Bandpass

‘ / Highpass
h.(k
x(n) i e x(n) y(n)
X > yin) —* hylk) + hy(k) —
h,(k)

\ Lowpass \ / Bandstop




HARDWARE IMPLEMENTATION OF
SECOND-ORDER IIR FILTER (BIQUAD) DIRECT FORM 1

. _
x(n) T > "{/Z ) > T > y(n)

b, :' \ -a,
-+

B y(n) = byx(n) + byx(n-1) + byx(n-2) - a;y(n-1) — a,y(n-2)

M
- N L bz (Zeros)
y(n) = 2 b, x(n—k) - & a,y(n-k _ k=0
myn) x(n—K) - 2 ay(n-k) H HEe)
k=0 k=1 N

1 + Zaz*X (Poles)
k=1



lIR BIQUAD FILTER DIRECT FORM 2

L] Reduces to the same equation as Direct Form 1:

L] y(n) = byx(n) + byx(n=1) + byx(n-2) - a,y(n-1) - ayy(n-2)

L] Requires Only 2 Delay Elements (Registers)
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IIR BIQUAD FILTER SIMPLIFIED NOTATIONS
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Digital Filter
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FIGURE 19-2
Single pole low-pass filter. Digital recursive filters can muamic analog filters composed of resistors and

=
capacitors. As shown in this example. a single pole low-pass recursive filter smoothes the edge of a step input,

just as an electronic RC filter.
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Digital Filter
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FIGURE 19-3

Single pole high-pass filter. Proper coefficient selection can also make the recursive filter mimic an electronic
RC high-pass filter. These single pole recursive filters can be used in DSP just as you would use RC circuits

in analog electronics.
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FIGURE 19-4

Example of single pole recursive filters. In (a), a high frequency burst rides on a slowly varying signal. In (b).
single pole low-pass and high-pass filters are used to separate the two components. The low-pass filter uses x

=093, while the high-pass filter 15 for x = 0.86.
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FIGURE 19-5

Single pole frequency responses. Figures (a)
and (b) show the frequency responses of high-
pass and low-pass single pole recursive filters.
respectively. Figure (c) shows the frequency
response of a cascade of four low-pass filters.
The frequency response of recursive filters 1s
not alwavs what you expect. especially if the
filter 1s pushed to extreme limits. For example.
the /. = 0.25 curve in (c) 1s quite useless. Many
factors are to blame. including: aliasing. round-
off noise, and the nonlinear phase response.
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Characteristics of narrow-band filters. Figure (a)
and (b) shows the frequency responses of LO—— AAAAAAAmpnanan

various band-pass and band-reject filters. The =
step response of the .band-renect filter 13 shown ;E_* [EW=0.0065 | : I
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Parameters for evaluating firequency domain performance. The frequency responses shown are for low-pass
filters. Three parameters are important: (1) roll-off sharpness, shown in (a) and (b). (2) passband ripple, shown
in (c) and (d), and (3) stopband attenuation. shown in () and (f).



a. High-pass by Low-pass

adding parallel stages j
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— h[n] _
x[u] ::§>—+ﬂm
> O[n]

All-pass

b. High-pass High-pass

in a single stage LC

X[n] ——> J[n] - h[n]

—> yln]

a. Band-reject by

S5
adding parallel siages ‘ j
I

x[n]

v[n]

1] — vy[n]

a. Band-pass by

Low-pass

High-pass

cascading stages —\ /7

x[n] —>{Iy[n] —>{L,[n] —> ][]

b. Band-pass
10 a single stage

Band-pass

1L

[n] —»

hy[n] % hy[n]

—> y[u]




[TapameTpbl (PUIIBTPOB

Step Response Frequency Response
Volagegain | ouershoot  semni% iy | Riemlein Fjoameey  Ereaeng
* . 0.1% pRsIDED attenuation  attenuation
Bessel
2 pole 1.27 0.4% 0.60 1.12 0% 12.74 40.4
4 pole 1.91 0.9% 0.66 1.20 0% 4.74 8§45
6 pole 2.87 1% 0.74 1.18 0% 3.65 543
8 pole 4.32 0.4% 0.30 1.16 0% 3,35 4.53
Butterwaorth
2 pale 1.59 4.3% 1.06 1.66 0% 10.0 31.6
4 pale 2.58 10.9% 1.68 274 0% 3.17 5.62
6 pole 421 14.3% 2.74 5392 0% 2.16 3.17
8 pole 6.84 16.4% 3.50 5:12 0% 1.78 2.38
Chebyshev
2 pale 1.84 10.8% 1.10 1.62 6% 12.33 38.9
4 pale 421 18.2% 3.04 5.42 6% 2.59 447
6 pole 10.71 21.3% 5.86 10.4 6% 1.63 2.26
8 pole 28.58 23.0% 5.34 16.4 6% 1.34 1.66
TABLE 3-2

Characteristics of the three classic filters. The Bessel filter provides the best step response, making 1t the choice for
time domain encoded signals. The Chebyshev and Butterworth filters are used to eliminate frequencies in the
stopband, making them i1deal for frequency domain encoded signals. Values 1n this table are 1n the units of seconds
and herrz. for a one hertz cutoff frequency.
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Pulse response of the Bessel and Chebyshev
filters. A key property of the Bessel filter is that
the rising and falling edges in the filter's output
looking stmilar. In the jargon of the field, this is
called linear phase. Figure (b) shows the result
of passing the pulse waveform in (a) through a 4
pole Bessel filter. Both edges are smoothed 1n a
similar manner. Figure (c) shows the result of
passing (a) through a 4 pole Chebyshev filter.
The left edge overshoots on the fop, while the
right edge overshoots on the bottom. Many
applications cannot tolerate this distortion.
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FIGURE 32-11 FIGURE 32-12
Freqguency response of the three filters on a Frequency response of the three filters on a
fogarithmic scale. The Chebwyvshewv filter has firrear scale. The Butterworth filter provides
the sharpest roll-off. the flattest passband._
in Fig. 3-12. Passband ripple can now be seen in the Chebyshewv filter
(wavy variations in the amplitude of the passed frequemncies). In fact. the

Chebyshewv filter obtains its excellent roll-off by a//owing this passband
ripple. When more passband ripple is allowed in a filter. a faster roll-off
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FIGURE 9-2

Detailed view of a spectral peak using various windows. Each peak in the frequency spectrum 1s a central lobe
surrounded by tails formed from side lobes. By changing the window shape. the amplitude of the side lobes can be
reduced at the expense of making the main loabe wider. The rectangular window. (a). has the narrowest main lobe but
the largest amplitude side lobes. The Hamming window. (b). and the Blackman window. (c). have lower amplitude side
lobes at the expense of a wider main lobe. The flat-top window. (d). 1s used when the amplitude of a peak must be
accurately measured. These curves are for 233 point windows: longer windows produce proportionately narrower peaks.
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Example of spectral reversal. The low-pass filter kernel in (a) has the frequency response shown in (b). A
high-pass filter kernel. (c). 1s formed by changing the sign of every other sample in (a). This action in the time
domain results in the frequency domain being flipped /gft-for-rigiiz. resulting in the high-pass frequency

response shown in (d).
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Example of a moving average filter. In (a). a
rectangular pulse is buried 1n random noise. In
(b) and (c), this signal 1s filtered with 11 and 51
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MOVING AVERAGE FILTER FREQUENCY RESPONSE
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4-POINT MOVING AVERAGE FILTER

x(n) x(n-1) X(n=2) X(n=3)

TE T

LUTEa hit) (N h(2) (N, h3) /<N
" >< >< 1 \>_</ ‘ X

y(n) = h(0) x(n) + h(1) x(n = 1) + h(2) x(n = 2) + h(3) x(n - ;'\ST—

= Xm+ 5 x(n-1)+ - x(n-2)+ — x(n-3)

=%x(n) + X(n-1) + x(n-2) + x(n—3)]

=

For N-Point =1

1
Moving Average Filter:  ¥(n) = 5 kZ_ ) X(n - k)



CALCULATING OUTPUT OF
4-POINT MOVING AVERAGE FILTER

y(3)= 0.25 X(3) *+ x(2) * x(1) * x(0)

y(4) = 0.25 X(4) + x(3) + x(2) + x(1)
y(3)= 0.25 X(3) + x(4) + x(3) + x(2)
y6)= 025 |  x(6)+X(5) + x(4) + X(3)

y(7) = 0.25 | x(7) * x(6) + x(5) *+ x(4)

Each Output Requires:
1 multiplication, 1 addition, 1 subtraction




4-TAP MOVING AVERAGE FILTER STEP RESPONSE

* o o X X X X X

® = Input x(n) X

X = Qutput vyi(n) X

3 6 7 8 9 10 11 12

1 N-1
B General: y(n =ﬁZ

X(n - k)
0

3
B ForN=4 y(n)=%z X(n - k)



MOVING AVERAGE FILTER RESPONSE
TO NOISE SUPERIMPOSED ON STEP INPUT
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Characteristics of multiple-pass mowving average filters. Figure (a) shows the filter kernels resulting from

assing a seven point moving average filter over the data once. twice and four times.
= (= = 2

Figure (b) shows the

corresponding step responses, while (¢) and (d) show the corresponding frequency responses.
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FIGURE 15-4

Frequency response of the Blackman window
and Gaussian filter kernels. Both these filters
provide better stopband attenuation than the
moving average filter. This has no advantage in
removing random noise from time domain
encoded signals. but 1t can be useful 1n mixed
domain problems. The disadvantage of these
filters 15 that they must use convalution, a
terribly slow algorithm.
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FIGURE 16-7

The incredible performance of the windowed-sinc filter. Figure (a) shows the frequency response of a
windowed-sinc filter with increased stopband attenuation. Thus 15 achieved by convolving a windowed-sinc
filter kernel with itself. Figure (b) shows the very rapid roll-off a 32,001 point windowed-sinc filter.
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EQUATION 17-1

The Wiener filter. The frequency response, S [ f ]3
represented by H[f]. 1s determined by the H [ f‘ ] — — L
frequency spectra of the noise, N[f]. and - .S[f ]2+ n,;[f]ﬂ
the signal. S[f]. Only the magnitudes are - L
important; all of the phases are zero.

a. Original spectium c. Recorded spectrum e. Deconvolved spectrum

= a A
E =i =
E s 5
<< - -7,

Frequency Frequency Frequency

\ <I'
\ \
Undesired v 3 : -
& =1 Deconvolution I N
Conveolution
.’f /f
J
/ /

b. Frequency response d. Frequency response

= =

= =

Z =

Frequency Frequency

FIGURE 17-6
Dreconwvolution of old phonograph recordings.

The frequency spectrum produced bw the original singer is

illustrated in (a). Resonance peaks in the primitive equipment. (b). produce distortion in the recorded
frequency spectrum. (c). The frequency response of the deconvolution filter. (d). 1s designed to counteracts
the undesired convolution. restoring the original spectrum. (). These graphs are for illustrative purposes only:

thew are not actual signals.
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FIGURE 17-7

Example of optimal filtering. In (a). an exponential pulse buried 1n random nose. The frequency spectra of
the pulse and noise are shown 1n (b). Since the signal and noise overlap 1n both the time and frequency
domains, the best way to separate them 1sn't obvious.
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Example of optimal filters. In (a), three filter kernels are shown, each of which is optimal 1n some sense. The
corresponding frequency responses are shown in (b). The moving average filter 1s designed to have a
rectangular pulse for a filter kernel. In comparison, the filter kernel of the matched filter looks like the signal
bemng detected. The Wiener filter 15 designed in the frequency domaim. based on the relative amounts of signal

and noise present at each frequency.
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FIGURE 17-9

Example of using three optimal filters. These
signals result from filtering the waveform in Fig.
17-7 with the filters in Fig. 17-8. Each of these
three filters 1s optimal in some sense. In (a). the
moving average filter results in the sharpest
edge response for a given level of random noise
reduction. In (b). the matched filter produces a
peak that 1s farther above the residue noise than
provided by any other filter. In (c). the Wiener
filter oprimizes the signal-to-noise ratio.
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FIGURE 17-3

Example of an unavoidable convolution. A gamma ray detector can be formed by mounting a scintillator on
a light detector. When a gamma ray strikes the scintillator, 1ts energy 1s converted into a pulse of light. This
pulse of light 1s then converted into an electronic signal by the light detector. The gamma ray 1s an impulise,
while the output of the detector (1.e., the impulse response) resembles a one-sided exponential.
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FIGURE17-4

Example of deconvolution. Figure (a) shows the output signal from a gamma ray detector in response to a
series of randomly arrving gamma rays. The deconvolution filter 1s designed to convert (a) mto (b). by
reducing the width of the pulses. This minimizes the amplitude shift when pulses land on top of each other.
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FIGURE 20-1

The Chebyshev response. Chebyshev filters
achieve a faster roll-oft by allowing ripple m the
passhand. When the ripple 15 set to 0%, 1t 15
called a maximally flat or Butterworth filter
Constder using a ripple of 0.3% 1 your designs:
th1s passband unflatness 15 so small that it
cannot be seen 1n this graph, but the roll-off 15
much faster than the Butterworth,
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Comparison of analog and digital filters.
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IDNigiatal filters hawve bhetter performance in naany areas. such as:

passbLand 1ipple. (a) ves. (LY. 20l1-0ff zand stopbLand attenuatzon., () ve. (d). and sltep 1espPpoOIse syInIaels v,
(e) ve. (£f). The digiral filter 1n this example has a cutoff freguency of 0.1 of the 10 kHz= sampling rate.
This provides a fair comparison to the 1 kK H» cntaff froqgueney of the analog filrter
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(1) We begin with the Chebyshev squared magnitude response function

H ()| = ! = P(Q). 9.116
2
I +e"TN(L2/7Q )
The squared magnitude response function for the elliptic or Cauer filter'# is
2 I _ B(Q) -
|H,(£2)|” = s = 20’ (9.127)
l +e"R (Q)
I

H Q) = ;

s

.‘? 5
I +e" R, (L)
i
Rewverse the frequency axis to find O(L2) = 1 — P(f.l_l_}:

2. 2
e TN(L2_ /€
Q) = 1 — I — visd ~22)

|+ e Ta(2 /) 1 +e TN(CQ,_ /)
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FIGURE 21-2

Windowed-sinc and Chebyshev frequency responses. Frequency responses are shown for a 51 point
windowed-sinc filter and a 6 pole, 0.5% ripple Chebyshev recursive filter. The windowed-sinc has better
stopband attenuation, but esther will work 1n moderate performance applications. The cutoff frequency of both
filters 15 0.2, measured at an amplitude of 0.5 for the windowed-sinc, and 0.707 for the recurstve.
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Windowed--sinc and Chebyshev step responses. The step responses are shown for a 31 point windowed-sinc
filter and a 6 pole, 0.5% ripple Chebyshev recursive filter. Each of these filters has a cutoff frequency of 0.2.
The windowed-sinc has a shightly better step response because it has less overshoot and a zero phase.
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Figure 7.1 Basic system for ()
discrete-time filtering of Hie)
continuous-time signals.
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Figure 7.45 Precompensation of a Figure 7.2 (a) Specifications for effective frequency response of overall system
discrete-time filter for the effects of a in Figure 7.1 for tha case of a lowpass filter, (b) Corresponding specifications for

D/A converter. the discrete-fime system in Figure 7.1.



FIR CAD TECHNIQUES: PARKS McCLELLAN PROGRAM
WITH REMEZ EXCHANGE ALGORITHM
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Figure 7.23 IHHlustration of type of approximation obtained at a discontinuity of

the ideal frequency response.
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Figure 7.40 lllustration of the
Parks-McClellan algorithm for
equiripple approximation.

Initial guess of
2) extremal frequencies
(L +2) extremal frequencies

Changed

Calculate the optimum
6 on extremal set

[nterpolate through (L + 1)
points to obtain A,(e/®)

Calculate error E(w)

and find local maxima
where |E (w)l = &

!

More than
(L +2)
extrema?

No

Yes

Retain (L + 2)
largest
extrema

~

Check whether the
extremal points changed

Unchanged

Best approximation

Figure 7.41  Flowchart of
Parks-McClellan algorithm.
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Figure 7.35 Typical example of a lowpass filter approximation that is optimal
according to the alternation theorem for L = 7.
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Butterworth filters, |H(co)|2: w_=100Hz: n =4, 8. 16

1'2 T T T T T T T T T
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o.e | { ‘ !
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f \
0.2} | [ \1\

2
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Fig. 9.30. Analog Butterworth filters for a few orders.

Butterworth filter by (Q2.)72" = a»,,. Thus. the Burterworth filter of order N > O is
defined by its Fourier transform H(m) (Figure 9.30):

H(Q) = L . (9.84)

1 (@) 2N
N (QC)
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) Figure B.1 Magnitude-squared
Figure B.2 Dependence of Butterworth function for continuous-time
magnitude characteristics on the Bitfarirorth fillar

order V.
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1
1 4+ e2VEA(2/2)

| H(j$2)|* =

.

1
1+ [e2VE(/ 2)]71

| H.(F2)|* =

|H.(j0)] VN(I) = COS(N cos™! x)*

Figure B.6 Equiripple approximation

in both passband and stopband. Figure B.4 Type | Chebyshev lowpass
filter approximation.
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Figure 7.8 Frequency warping
inherent in the bilinear transformation of
a continuous-time lowpass filter into a
discrete-time lowpass filter. To achieve
the desired discrete-time cutoff
frequencies, the continuous-time cutoff
frequencies must be prewarped as
indicated.
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FIGURE 16-4

Example filter kernels and the corresponding step responses.

approximately equal to the cutoff freguency. 7.. while Af determines the kernel length.

The freguency of the sinusoidal oscillation 1s
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Example of a windowed-sinc band-pass filter. This filter was designed for a sampling rate of 10 kHz. When
referenced to the analog signal, the center frequency of the passband 1s at 2 kHz, the passband 15 80 hertz, and the
transition bands are 30 hertz. The windowed-sinc uses 801 ponts 1n the filter kernel to achieve this roll-off. and a
Blackman window for good stopband attenuation. Figure (a) shows the resulting frequency response on a linear
scale, while (b) shows 1t 1n decibels. The frequency axis 1n (a) 15 expressed as a fraction of the sampling frequency.
while (b) 1s expressed in terms of the analog signal before digitization.
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FIGURE 214

Maximum performance of FIR and IIR filters.
The frequency response of the windowed-sinc
can be virtually any shape needed, while the
Chebyshev recursive filter 15 very limited. This
eraph compares the frequency response of a six
pole Chebyshev recursive filter with a 1001
pomnt windowed-sinc filter.
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FIGURE 21-3

Comparing FIR and IIR execution speeds. These
curves shows the relative execution times for a
windowed-sinc filter compared with an equivalent
s1x pole Chebyshev recursive filter. Curves are
shown for implementing the FIR filter by both the
standard and the FFT convolution algorithms. The
windowed-sinc execution time rises at low and high
frequencies because the filter kernel must be made
longer to keep up with the greater performance of
the recursive filter at these frequencies. In general,
IR filters are an order of magnitude faster than FIR
filters of comparable performance.
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FIGURE 21-6

Moving average and single pole frequency
responses. Both of these filters have a poor
frequency response, as you should expect for
fime domarn filfers.
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Step responses of the moving average and the bidirectional sigle pole filter. The moving average
step response occurs over a smaller number of samples, while the single pole filter's step response

15 smoother.
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FIGURE 22-11
Homomorphic separation of multiplied signals. Taking the logarithm of the input signal transforms

components that are multiplied into components that are added. These components can then be separated by
linear filtering. and the effect of the logarithm undone.
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Homomorphic separatton of convolved signals. Components that have been convolved are converted into
components that are added by taking the Fourter transform followed by the logarsthm. After linear filtering

to separate the added components, the onginal steps are undone.
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FWHM versus MTE. Figure (a) shows profiles of three PSEs commonly found i mmaging systems: (P) pillbox,
(G) Ganssian, and (E) exponential. Each of these has a FWHM of one unit. The corresponding MTFs are
shown 1n (b). Unfortunately. similar values of FWHM do not correspond to similar MTF curves.
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Edge response and MTE. Figure (a) shows the edge responses of three PSEs: (P) pillbox, (G) Gaussian. and
(E) exponential. Each edge response has a 10% to 90% rise distance of 1 unit. Figure (b) shows the
corresponding MTF curves, which are similar above the 10% level. Limiting resolution 1s a vague term
indicating the frequency where the MTF has an amplitude of 3% to 10%.
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FIGURE 23-19
Backprojection filter. The frequency response of the backprojection filter 1s shown i (a), and the
corresponding filter kernel 1s shown m (b). Equation 23-2 provides the values for the filter kernel.
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FIGURE 20-3

Chebyshev step response. The overshoot in the Chebyshev filter's step response 15 3% to 30%,
depending on the number of poles. as shown in (a). and the cutoff frequency. as shown in (b). Figure
(a) 15 for a cutoff frequency of 0.03, and may be scaled to other cutoff frequencies.
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Filter length vs. roll-off of the windowed-sinc filter. As shown in (a), for M =20, 40, and 200, the transition
bandwidths are BIF=0.2, 0.1, and 0.02 of the sampling rate. respectively. As shown in (b). the shape of the
frequency response does not change with different cutoff frequencies. In (b), M= 60.
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Figure 11.7 (a) Impulse response and (b) magnitude response of an FIR Hilbert
transformer designed using the Kaiser window. (A = 18 and 8 = 2.629.)
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FIGURE 30-6

RLC notch filter. This circuit removes a
narrow band of frequencies from a signal.
The use of complex substitution greatly
simplifies the analysis of this and simalar
circuits.
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FIGURE 30-5

Definition of impedance. When sinusoidal voltages and currents are represented by complex numbers. the ratio

between the two 1s called the impedance. and 1s denoted by the complex variable, Z. Resistors, capacitors and
inductors have impedances of R, -j/wC, and jwL, respectively.
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FIGURE 3-10
Switched capacitor filter operation. Switched capacitor filters use switches and capacitors to mimaic

resistors. As shown by the equivalent step responses, two capacitors and one switch can perform the
same function as a resistor-capacitor network.
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A six pole Bessel filter formed by cascading three Sallen-Key circusts. Thas 15 a low-pass filter with
a cutoff frequency of 1 kHz.
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FIGURE 3-8

The modified Sallen-Key circuit, a butlding
block for active filter dessgn. The circuit
shown mplements a 2 pole low-pass filter.
Higher order filters (more poles) can be
formed by cascading stages. Find k; and k,
from Table 3-1, arbitranaly select R, and C
(try 10K and 0.01yF), and then calculate R
and R from the equations 1 the figure. The
parameter, £.. 15 the cutoff frequency of the
filter, 1n hertz.
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REVIEW OF POPULAR ANALOG FILTERS

B Butterworth
¢ All Pole, No Ripples in Passband or Stopband
¢ Maximally Flat Response (Fastest Roll-off with No Ripple)
B Chebyshev (Type 1)
¢ All Pole, Ripple in Passband, No Ripple in Stopband
€ Shorter Transition Region than Butterworth for Given Number
of Poles
¢ Type 2 has Ripple in Stopband, No Ripple in Passband
B Elliptical (Cauer)
% Has Poles and Zeros, Ripple in Both Passband and Stopband
® Shorter Transition Region than Chebyshev for Given Number
of Poles
¢ Degraded Phase Response
B Bessel (Thompson)
¢ All Pole, No Ripples in Passband or Stopband
¢ Optimized for Linear Phase and Pulse Response
¢ Longest Transition Region of All for Given Number of Poles



IR FILTER DESIGN TECHNIQUES

Impulse Invarient Transformation Method
¢ Start with H(s) for Analog Filter
% Take Inverse Laplace Transform to get Impulse Response
% Obtain z-Transform H(z) from Sampled Impulse Response
¢ z-Transform Yields Filter Coefficients
¢ Aliasing Effects Must be Considered

Bilinear Transformation Method
¢ Another Method for Transforming H(s) into H(z)

¢ Performance Determined by the Analog System’s
Differential Equation

% Aliasing Effects do not Occur
Matched z-Transform Method

€ Maps H(s) into H(z) for filters with both poles and zeros
CAD Methods

¢ Fletcher-Powell Algorithm

¢ Implements Cascaded Biquad Sections



COMPARISON BETWEEN FIR AND IIR FILTERS

IR FILTERS

FIR FILTERS

More Efficient
Analog Equivalent
May Be Unstable
Non-Linear Phase Response
More Ringing on Glitches
CAD Design Packages Available

No Efficiency Gained by Decimation

Less Efficient
No Analog Equivalent
Always Stable
Linear Phase Response
Less Ringing on Glitches
CAD Design Packages Available

Decimation Increases Efficiency
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DECIMATION COMBINED WITH FIR FILTERING

A: No Change in Computational Efficiency

X(n)
z!1 e z —-{ 1 f
| Clock = Ws
h(O)* h(1)Y h(2) h(N-1) Y l
e ) (o) ' [ Data _,y(m) b
\}_-'-) @/ = \ZJ Register
B: Computational Efficiency Increased by Factor of M
X(n)
—T z!' e z7 T--- 7
Clock = fs
N Data Registers = M
@ & ©) >



C:

INTERPOLATION BY AFACTOR OF L
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TYPICAL INTERPOLATION IMPLEMENTATION

Clock = Lf;

X(n) l

— TL

Rate Expander

!

h(0)Y

and Inserts Zeros

2—1

Interpolation Filter

Increases Sample Rate

h(1)

o
\&/

z_'1

.-

h(2) ¥
;}

Efficient DSP algorithms take advantage of:

B Multiplications by zero

B Circular Buffers

B Zero-Overhead Looping

2_1

h(N-1)

b

o Yim) y(m) TL

Y 7



SAMPLE RATE CONVERTERS

~— INTERPOLATOR —_  — DECIMATOR —

X(n) y(m)
—» TL |— hi(kl —> h' k) —> M ——

\\/ QOutput Sample Rate = _hln-ﬂ_ fs

¥

x(n) y(m)

— TL »  h(k) » M —

B Example: Convert CD Sampling Rate =44.1kHz to
DAT Sampling Rate = 48.0kHz

B UselL=160, M=147

B fou™ 1 fs = 190 44.1kHz = 48.0kHz
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ADAPTIVE FILTER

Desired Signal

x(n) ADAPTIVE
— > N-TAP
Input Signal FIR FILTER

;
- h(k),
Filter

y(n)

o,

ADAPTIVE
ALGORITHM

Coefficients

= \ D /'

Error
Signal

(LMS, RLS)



DIGITAL TRANSMISSION
USING ADAPTIVE EQUALIZATION

- O ENCODER,
TRSR_?:MT /j—p MODULATOR, [+ DAC -*AF'TCTLES
\ FILTER
L RAINING TRANSMISSION
CHANNEL
SEQUENCE Adds Noise,
Amplitude and
Phase Distortion
RECEIVE
DATA DECODER,
9| ADAPTIVE s |DEMODULATOR, [«| ADC |« [ANALOG |
FILTER FILTER
FILTER
N
h(k) b
T | ADAPTIVE |_Error il
ALGORITHM
A TRAINING
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PITCH
PERIOD

LINEAR PREDICTIVE CODING (LPC)
MODEL OF SPEECH PRODUCTION

NOSE
] M =
PHARYNX - MOUTH L~
vELum | _(Tengue & Lips) [
~ TN LARYNX
(Vocal Cords)
.
LUNGS
IMPULSE Voiced
TRAIN j
| - TIME-VARYING
GENERATOR \k_ﬂ—._'f’>.<\:‘—' entpich i
"HOISE J 3 FILTER
NOISE
GENERATOR Unvoiced | gAIN



LPC SPEECH COMPANDING SYSTEM

f. = 8kSPS
s TRANSMITTING DSP
Speech l
Input
—»{ 16-Bit —» WINDOWING COEFFICIENT
ADC RREEMEHASIS (20ms) AND PITCH
128kBPS
2.4kBPS
fs = 8kSPS RECEIVING DSP
Speech l P
Quipub| sesii . s) = X a, s(n-k) +G +x(n)
DAC k=1
/ N N LNANS 4
Speech All-Pole Gain Excitation {."
128kBPS Output Filter |

Data Rate Reduction Factor = 53.3 ——



ALL POLE LATTICE FILTER

EXCITATION SPEECH
INPUT OUTPUT
Xpa(n) y(n)

); o

'.,‘&. y
/ \KH \
z-1 |=< -——- -<—@— z1 —(—‘ <@ z1

Upg(n) us(n) uq(n)

ESTIMATION OF LATTICE FILTER
COEFFICIENTS IN TRANSMITTING DSP

SPEECH ERROR
SAMPLES - /Z_ SIGNAL
§ =
ADAPTIVE T
z1 —» FIR
PREDICTOR
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T COEFFICIENTS ADAPTIVE
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antialias filter reconstruction filter
\ Analog ‘ ; Digital DAC Analog
Filter ADC Processing 2 R | Filter
Analog Filtered Digitized Digitized J.na]og
Input Analog Tnput Ouiput Analog Cutput
Input Qutput

FIGURE 3-7

Analog electronic filters used to comply with the sampling theorem. The electronic filter placed before an ADC 15
called an antiafias filter. It 15 used to remove frequency components above one-half of the sampling rate that would
alias during the sampling. The electronic filter placed after a DAC 1s called a reconstruction filter. It also elimmates
frequencies above the Nyquist rate, and may include a correction for the zeroth-order hold.



BpeMeHHbBIE OKHA

wn] Rectangular

1.0
Hamming
- Hanning
0.8 — == =  Blackman

————— Bartlett

0.6

0.4
0.2
o / "
o e * ST

Figure 7.21 Commonly used windows.



Bpemennsie okHa . -
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TABLE 9.2. Window Functions for N > 0 Samples”

Name Definition
- N-1
. 1| <
Rectangular w(n) = 1 : if |n| < 2)
0 otherwise
' oAl o
Bartlett (triangular) wn)= 11— 2|n| if |n| < Ne1
N -1 2
: YTy
Hann win) = 1[1 — COS “n”} if |n| < i)
2 N-1 2
Hamming w(n) = 0.54 — 0.46cos =11 if |n| su
N -1 2
e Ry 2Ttn 4mnn — 1
Blackman w(n) = 042 +0.5cos + 0.08 cos f |n| € ——
f - - e
2n \?
Kaiser [O(a\/' _(N— 1) ] N1
w(n) = if |n| < —

IO(oc) 2
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TABLE7.1  COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximate Error, Kaser ~ of Equivalent

Typeof  Amplitude  Width of 201og, 8 Window, Kaiser
Window  (Relative) ~ Main Lobe (dB) p Window
Rectangular -13 dm/(M+1) =21 ( 181z /M
Bartlett -2 §n/M A 133 2.31n/M
Hanning =31 /M —H 3.86 3.0l /M
Hamming —4] 8t/M =33 436 0.217/M

Blackman =37 12n/M -4 104 9.197/M
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Figure 6.6 Direct form | implementation of Eq. (6.16).
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e 6.2 Example of a block diagram representation of a difference equation.
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TABLE6.3  UNQUANTIZED AND QUANTIZED COEFFICIENTS FOR AN OPTIMUM FIR

LOWPASS FILTER (M = 27)

Coefficient Unquantized 16 bits 14 bits 13 bits 8 bits
h[0] = h[27 1359657 x 10-3 45x275  11x2 B 6x2712  0x27
h[1] = h[26] -1616993x 10  -53x275  —13x27B  —7x272  0x2”
h2] = h[25] -7738032x 1073  -254x2°B  —63x2°B  _32x2712  —1x27
h3] = h[24] -2.686841x 103  -8x27P —2x27B  -_11x272  0x2”
h[4] = h[23] 1255246 x 102 411x27B  103x27B  s51x27?2 2x2]
h(5] = h[22 6.591530x 103 216x2°B  4x2B  27x2°12 1x27
h6] =h[21] -2217952x 102 -727x2™B —182x27B  -91x27?  _3x27
h[7] = h[20] -1524663x 102 =500x2°5 —125x2"8  —2x2712  -2x277
W8] =h[19] 3720668 x 1072 1219x278®  305x27B  1:2x272 5x277
h[9] = h[18] 32333321072 1059x27P  265x27B  132x272 4x27
h[10) = A[17] —6537057 x 102 -2142x2-5  -536x 2B  -268x2-12  —8x27
h[11] =h[16] -7528754x 1072 -2467x275  —617x2°8  -38x2722 —-10x277
W12 = A[15] 1560970 x 10~ S5115x 275 1279%x 2B  639x 2722 20x 277
h[13] = h[14] 4394094 x 1071 14399275 3600278 1800x2  S6x277




