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Project Goals

* To Design and Implement an optimization
algorithm for a fluid-thermal simulator

* MGFLO

* Boundary Condition Manipulation



Microgravity Fluid Research

* Surface Tension * Liquid Bridges
* Smallest Surface Area ° ALEX: ALiqud
Possible Electrohydrodynamics
eXperiment

* Dominated on Earth by o SurfaceTonsion
Gravity, which Makes Dominatas with
Surfaces Flat Decreased Electric

Field

In a microgravity environment, surface tension and
thermocapillary effects can be dominant.






Microgravity Test Facilities

* Drop Towers

* Evacuated tubes used
to expose experiments
to several seconds of
microgravity

* Only short durations of
microgravity are
achieved




Test Facilities

e NASA’s KC-135
“Vomit Comet”

* Parabolic flight pattern
can produce up to 30
seconds of
microgravity

* Several periods of
microgravity in one
flight




Test Facilities

* Sounding Rockets

* Also flown in a
parabolic flight path to
produce microgravity

* Can provide 6-7

minutes of
microgravity




Microgravity Simulation

* Computational Fluid Dynamics
(CFD) allows cost-effective
microgravity simulation

* Advances 1n parallel
supercomputing allow large
problems to be solved




Governing Equations

* Incompressible Navier-Stokes Equations:

* Energy Equation:



MGFLO

* Developed Under NASA-Grand Challenge
Support

e Parallel, Finite Element Formulation of
Navier-Stokes and Energy Equations

* Allows for Coupled and Uncoupled
Solution

* Systems Optimized Through Matlab Using
Existing Algorithms



Optimization Theory

* Attempt to find “best value” of a mertit
function within defined constraints

* Gradient versus non-gradient methods

* Gradient methods can be complex and require
several merit function evaluations

* Non-gradient methods optimize based on a
sample set of merit function values

Nelder-Mead Simplex Search Algorithm



Nelder and Mead’s Method

* Efficient search method for minimizing a
merit function of up to six variables

* Optimization points are nodes of a polygon
* Optimal solution is determined by:

* Reflection

* Expansion

e Contraction



Contraction

Expansion



Previous Work

* Investigated Operation of the MGFLO Code

* Designed Simple Optimization Routine in
Matlab

* Established Algorithms to Optimize
Complex Fluid-Thermal Systems



Code Overview

* Developed Matlab Routines to Analyze
MGFLO Output.

* Matlab Can Compute Quantities of Interest:

Vorticity, Divergence
Gradient, Laplacian

0™ 15t 27 Order Derivatives Normal to Walls

Average Quantities in Large Datasets



Code Functions

* Initializes the solution
* Calls MGFLO for each simplex step

* Checks that user-specified constraints are
satisfied

* Calculates the user-specified merit function

* Allows user to monitor solution progression



Flow Chart
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Debugging & Validation

* Attempt to find answer to a known problem

* Position heat source on top surface to
maximize heat flux out of the bottom

e Run on the 16-node Beowulf cluster in the
CFDLab



Domain Description and Boundary Conditions
for Optimization Test Problem
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Results for Optimization Test Case L
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Optimization Path
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[Limitations

* Merit function dependence for pathological
problems

* Not successful at maximizing vorticity in
previous case

* Non-smooth merit functions (too many local
maxima)



Applications

* Solve more complicated problem whose
answer 1s not known a-priori

* System exposed to external environment via
Newton’s law of cooling (mixed boundary
condition)

* Use particle tracing as a visualization
technique



Domain Description and Boundary Conditions
for Optimization Application Problem
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Case1l: T =310K

desired




Particle Tracing Algorithm

* Heun predictor-corrector method

e Second-order accurate in time

* Allows visualization/quantification of mixing









Convergence History
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Case2: T =340K

desired
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Convergence History
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Conclusions

e We became familiar with the CFDLab and
the MGFLO code

* Successfully developed a method to
optimize nonlinear fluid-thermal systems

* Implemented a particle tracing algorithm 1n
Matlab to visualize fluid mixing



Recommendations

Y Use partlcle tracmg algorlthm to optimize

.o Implement fem .ff‘-; _f 5ge! " ¢
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Questions?



