

Российский химико-технологический университет им. Д.И. Менделеева Кафедра квантовой химии

Компьютерное моделирование процессов нанотехнологий.

Лекция 4. <u>Квантово-химическая трактовка решений</u> одноэлектронных уравнений

Цирельсон В.Г., Бобров М.Ф. «Многоэлектронный атом». Цирельсон В.Г., Бобров М.Ф. «Квантовая химия молекул».

Москва 2007 г.

Методы вычислительной химия наноразмерных систем

неэмпирическая квантовая химия

полуэмпирическая

квантовая химия

квантовая статистическая

механика

молекулярная динамика и метод Монте-Карло

Квантово-химическая трактовка решений одноэлектронных уравнений

Физический смысл ХФ энергии орбиталей ε_i имеют: если удалить с орбитали χ_i один электрон (ионизировать атом), изменение энергии системы можно приближенно записать как

$$\Delta \mathbf{E} \approx -\varepsilon_{i} = -\left[\mathbf{h}_{i} + \sum_{j}^{N} \left(\mathbf{J}_{ij} - \frac{1}{2}\mathbf{K}_{ij}\right)\right]$$

Этот результат называется *теоремой Купманса*. Обитальные ХФ-энергии дают оценку <u>потенциалов ионизации</u> I - энергий, которые необходимо сообщить системе, чтобы удалить какой-либо из ее электронов, она характеризует прочности связи электрона данной орбитали с атомным остовом.

Первый потенциал ионизации I₁ описывает энергию отрыва электрона с высшей занятой атомной орбитали. При этом и исходный атом, и образовавшийся ион находятся в основных (невозбужденных) состояниях. Потенциалы ионизации I₂, I₃, I₄ и т.д. отвечают дальнейшим последовательным отрывам электронов от ионов,

$$|_{1} < |_{2} < |_{3} < |_{4} \dots < |_{N}$$

Пример: для атома С первые потенциалы ионизации с верхней занятой 2р-АО и глубинной 2s-AO составляют соответственно 11.26 и 20.0 эВ.

Зависимость потенциалов ионизации элементов от атомного номера

В пределах периода с увеличением атомного номера потенциалы ионизации возрастают. Исключения связаны с устойчивостью замкнутых оболочек

(I_O < I_N; I_{Mg} > I_{AI}) с максимальной мультиплетностью.

Для экспериментального определения I применяют фотоэлектронную и рентгеноэлектронную спектроскопию. 4 Использование теоремы Купманса оправдано для молекул с жесткой структурой (для сопряженных углеводородов и др.), не изменяющих свою геометрию при ионизации. Более точно потенциал ионизации следует вычислять как разность ХФ энергий атома (молекулы) с замкнутой оболочкой и образующегося иона: *Сродством к электрону* А_х называют энергий, которая высвобождается при присоединении к нейтральному атому одного электрона.

 $A_1 = E(N+1) - E(N),$

Сродство к электрону можно приближенно охарактеризовать энергией низшей свободной (виртуальной) АО.

Приравнивая нулю дифференциал функционала электронной энергии

 $\mathsf{d}\{\mathsf{E}[\rho] - \mu\mathsf{N}[\rho(\mathbf{r})]\}_{V_{\mathsf{H}\mathsf{H}} = \text{ const}} = 0,$

 $(N = \int \rho(\mathbf{r}) \, d\mathbf{v})$, можно определить электронный химический потенциал µ:

$$\mu = \left(\frac{\partial E}{\partial N}\right)_{V_{ya} = 0}$$

При образовании химической системы из атомов химический потенциал выравнивается, при этом происходит переток электронов к атому с большим значением **µ. По смыслу это совпадает с введенной Полингом** электроот рицательностью.

const

Отсюда следует

виде:

$$\mu \approx -\frac{\mathbf{I} + \mathbf{A}}{2}$$

6

называется абсолютной электроотрицательностью (Parr, R. G. at all. 1978). Пирсон (1983), действуя аналогичным образом, показал, что скорость изменения химического потенциала μ при изменении числа электронов N есть абсолютная химическая жесткость

В рамках метода
$$\chi_2^{n} \left(\frac{\partial \mu}{\partial N}\right)_{V_{\text{яд}} = \text{const}} = \frac{1}{2} \left(\frac{\partial^2 E}{\partial N}\right)_{V_{\text{яд}} = \text{const}} \approx \frac{I - A}{2}$$

 $\eta = (E_{\text{HCAO}} - E_{\text{B3AO}}),$
 $\frac{1}{2}$

где Е_{нсао} – энергия нижней свободной атомной орбитали; Е_{взао} – энергия высшей занятой атомной орбитали.

Можно также определить индекс электрофильности (Parr R. G. at all. 1999)

$$\omega = \frac{\mu^2}{2} = \frac{\chi^2}{2} ,$$

величина которого может использоваться как индекс склонности атома (молекулы) к атаке электрофила. Другой важный индекс – поляризуемость _α, которая представляет собой меру линейного отклика электронной плотности в присутствии бесконечно малого электрического поля F и представляет собой вторую производную от энергии:

$$\alpha_{ab} = -\left(\frac{\partial^2 E}{\partial F_a \partial F_b}\right), \quad a, b = x, y, z$$

Экспериментально наблюдаемое значение поляризуемости является усредненным по

координатам:

$$\langle \alpha \rangle = \frac{1}{3} (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$$

Величины χ, η, ω и α являются характеристиками для атомов, ионов, молекул, других многоэлектронных многоядерных систем. Они лежат в основе концепций принципа жестких и мягких кислот и оснований, принципа максимальной жесткости, предложенного Пирсоном, и принципа минимальной поляризуемости, предложенным Chattaraj, P. K.; Poddar, A. J., 1998.

Атомы с закрытыми оболочками или подоболочками имеют большую жесткость и малую поляризуемость . В каждом периоде самыми мягкими являются атомы щелочных металлов, а самыми жесткими – атомы благородных газов. Общая тенденция состоит в увеличении жесткости по периоду и уменьшении ее в группе с ростом атомного номера элемента. Элементы с полностью заполненными подоболочками характеризуются локальными максимумами жесткости.

Наиболее электроотрицательные элементы обладают максимальной электрофильностью ω, и наоборот.

Для легких атомов главных ПОДгрупп отношение приблизительно постоянно и для них электроотрицательность может рассматриваться <u>Хк</u>ак хорошая мера относительной электрофильности в пределах группы. Отметим $\omega_{\rm F} > \tilde{\omega}_{\rm Cl}^{2}$ и $\chi_{\rm F} > \chi_{\rm Cl}^{2}$, однако _F < _{Cl}

 α α

В общем случае поляризуемость уменьшается по периоду и увеличивается в группе с ростом Z. Для η и ω наблюдается обратная тенденция. В зависимостях η и ω от Z, структура электронных подоболочек проявляется более отчетливо. Корреляция между температурой перехода в сверхпроводящее состояние и их

электроотрицательностью для 36 элементов

Существует корреляция между величиной электроотрицательности элемента и *температурой его перехода в сверхпроводящее состояние* T_{сп} (Ichikawa S.,1989). Наивысшими температурами T_{сп} обладают металлы с ~ 3.9 эВ: Nb, Tc, Pb. Установлено, что максимальные температуры перехода в сверхпроводящее состояние бинарных сплавов наблюдаются для систем со средней электроотрицательностью ~ 4 эВ.

Электронная плотность атома является скалярной функцией координаты. Имеет ли скалярная функция максимум или минимум в точке экстремума, определяется знаком ее второй производной или кривизной в этой точке. Кривизна одномерной функции f(x) отрицательна в точке x, если значение f(x) больше среднего значения этой функции в соседних точках x+dx и x–dx, и положительна в противоположном случае.

ЭП атома имеет максимум в положении ядра и спадает по мере удаления от ядра. Рассмотрим одномерную функцию f(x), моделирующую распределение электронов в атоме вдоль радиального направления, а также ее первую и вторую производные. Угол наклона f(x) в точке $x_1 - \Delta x$ больше, чем в точке $x_1 + \Delta x$, вторая производная по x в точке x_1 отрицательна, а это значит, что кривизна f(x) в x_1 положительна. Наклон f(x) в точке $x_2 + \Delta x$ больше, чем в точке $x_2 - \Delta x$, т.е. кривизна f(x)здесь отрицательна. В области от x_1 до x_2 функция f(x) имеет точку перегиба, в которой кривизна равна нулю. f(x) концентрируется в областях, в которых <0 и 2 fa(х)ежается >0. f(x) ма $\frac{d^2 f(x)}{dx}$ льно концентрируется в точке, где отрицательн $\frac{dx}{dx}^2$ кривизна при максимальна. Наличие^{dx}областей локальной концентрации или разрежения f(x) не связано с наличием максимумов или минимумов самой функции.

График монотонно убывающей функции f(x) и ее первой и второй производных. Вторая производная представлена в виде функции взятой с обратным знаком, чтобы подчеркнуть, что функция концентрируется в области, в которой ее вторая производная отрицательна Функция f(x), изображенная на рис., имеет максимум при x = 0 и других экстремумов не имеет (т.е. отсутствуют точки, в которых f'(x) = 0),

а области, где $\frac{d^2 f(x)}{dx^2} < 0$ и $\frac{d^2 f(x)}{dx^2} > 0$ имеют место.

Все сказанное справедливо и в случае трех измерений, в частности, справедливо для функции р (r). В этом случае необходимо рассматривать вторые производные по трем координатам – лапласиан ЭП:

$$\nabla^2 \rho(\mathbf{r}) = \frac{\partial^2 \rho}{\partial x^2} + \frac{\partial^2 \rho}{\partial y^2} + \frac{\partial^2 \rho}{\partial z^2}$$

В направлении от ядра ЭП экспоненциально уменьшается, и в общем случае кривизна ρ
(r) вдоль радиального направления от ядра положительна, как и f(x) в точке x₁ на рис.
10. Однако, две компоненты кривизны, перпендикулярные радиальной линии,
отрицательны. Таким образом, функция ∇²ρ(r) будет принимать разные знаки по мере
удаления от ядра, явно проявляя электронные оболочки атома.

Для каждой квантовой оболочки наблюдается пара областей (одна отрицательная и одна положительная) с внутренней областью, представляющей собой максимум концентрации электронов. Поскольку ЭП концентрируется при ∇²ρ<0, локальный максимум –∇²ρ будет соответствовать максимуму концентрации ЭП, а локальный минимум –∇²ρ указывает на локаяьное разрежение ЭП.

<u>Лапласиан ЭП определяет концентрацию электронов на валентной оболочке.</u> Она разделена на внутреннюю область, в которой $\nabla^2 \rho < 0$ и внешнюю, в которой $\nabla^2 \rho > 0$. Часть оболочки, внутри которой $\nabla^2 \rho < 0$, носит название области концентрации заряда валентной оболочки (*K3BO*). При образовании химической связи валентная оболочка искажается, приводя к появлению максимумов, соответствующих числу и относительному расположению электронных пар, отвечающих предсказаниям модели Льюиса и модели отталкивания электронных пар

Лапласиан ЭП для атомов водорода (а), неона (б), лития (в) и бериллия (г). Внутренние пики соответствуют 1s электронам, внешние – электронам валентной оболочки (Расчет UHF/6-31G(d))

Лапласиан ЭП для атомов бора (д), углерода (е), азота (ж) и кислорода (з). Внутренние пики соответствуют 1ѕ электронам, внешние – электронам валентной оболочки (Pacyer UHF/6-31G(d)) Оболочечная структура атома проявляется В радиальной функции распределения по иному. Максимум функции радиального распределения определяет значение котором r, Β С наибольшей вероятностью можно обнаружить ЭП, усредненную по бесконечно малому объему, лежащему между **ДВУМЯ** концентрическими сферами r+dr. Однако радиуса И фактическое распределение ЭП в трехмерном пространстве 16 максимумом в этой области не