Построить Р-Т, Т-х и Р-х проекции Р-Т-х диаграммы по описанию

- Диаграмма бинарной системы A-B с четырьмя химическими соединением A₂B, AB, AB₂, AB₄ плавящимся конгруэнтно и сублимирующими инконгруэнтно,
- При этом со стороны компонента В имеет место эвтектическое равновесие, а стороны компонента А перитектическое.
- Между химическими соединениями имеют место эвтектические равновесия.
- Фазы А, В и АВ, существуют в ограниченном интервале температур.
- Кроме того, в фазе твердого раствора на основе компонента А наблюдается синтектоидное равновесие с температурой на 50 К ниже температуры перитектического равновесия.
- Фаза АВ существует в виде двух полиморфных модификаций. Полиморфный переход между высокотемпературной -AB(1)- и низкотемпературной -AB(2)- модификациями протекает по перитектической реакции со стороны избытка обоих компонентов. Область моновариантного равновесия «твердая фаза AB(1)- твердая фаза AB(2)-пар» характеризуется неограниченной растворимостью в твердых фазах и наличием минимума азеотропного типа.
- Максимальная температура плавления фазы AB(1) является абсолютно максимальной для твердых фаз в системе A-B. Минимальная температура их существования на 100 К ниже температуры плавления соответствующего доминирующего компонента. Максимальная температура плавления фазы AB является абсолютно максимальной для твердой фазы в системе A-B. Тройная точка компонента A по давлению лежит существенно ниже тройной точки компонента B, а по температуре существенно выше..

Поетроить P-T, T-х и P-х проекции P-T-х диаграммы по описанию

Диаграмма бинарной системы A-B с четырьмя химическими соединением A₂B, AB, AB₂, AB₄ плавящимся конгруэнтно и сублимирующими инконгруэнтно,

Поетроить P-T, T-х и P-х проекции P-T-х диаграммы по описанию

Диаграмма бинарной системы A-B с четырьмя химическими соединением A₂B, AB, AB₂, AB₄ плавящимся конгруэнтно и сублимирующими инконгруэнтно, При этом со стороны компонента B имеет место эвтектическое равновесие,

Поетроить P-T, T-х и P-х проекции P-T-х диаграммы по описанию

Диаграмма бинарной системы A-B с четырьмя химическими соединением A₂B, AB, AB₂, AB₄ плавящимся конгруэнтно и сублимирующими инконгруэнтно, При этом со стороны компонента B имеет место эвтектическое равновесие, а стороны компонента A – перитектическое.

Построить Р-Т, Т-х и Р-х проекции Р-Т-х диаграммы по описанию

- Диаграмма бинарной системы A-B с четырьмя химическими соединением A₂B, AB, AB₂, AB₄ плавящимся конгруэнтно и сублимирующими инконгруэнтно,
- При этом со стороны компонента В имеет место эвтектическое равновесие, а стороны компонента А перитектическое.
- Между химическими соединениями имеют место эвтектические равновесия.
- Фазы A₂B и AB₂ существуют в ограниченном интервале температур.

Построить Р-Т, Т-х и Р-х проекции Р-Т-х диаграммы по описанию

- Диаграмма бинарной системы A-B с четырьмя химическими соединением A₂B, AB, AB₂, AB₄ плавящимся конгруэнтно и сублимирующими инконгруэнтно,
- При этом со стороны компонента В имеет место эвтектическое равновесие, а стороны компонента А перитектическое.
- Между химическими соединениями имеют место эвтектические равновесия.
- Фазы A₂B и AB₂ существуют в ограниченном интервале температур.
- Кроме того, в фазе твердого раствора на основе компонента А наблюдается синтектоидное равновесие с температурой на 50 К ниже температуры перитектического равновесия.

Сетроить Р-Т, Т-х и Р-х проекции Р-Т-х диаграммы по описанию

- Диаграмма бинарной системы A-B с четырьмя химическими соединением A₂B, AB, AB₂, AB₄ плавящимся конгруэнтно и сублимирующими инконгруэнтно,
- При этом со стороны компонента В имеет место эвтектическое равновесие, а стороны компонента А перитектическое.
- Между химическими соединениями имеют место эвтектические равновесия.
- Фазы А₂В и АВ₂ существуют в ограниченном интервале температур.
- Кроме того, в фазе твердого раствора на основе компонента А наблюдается синтектоидное равновесие с температурой на 50 К ниже температуры перитектического равновесия.
- Фаза AB существует в виде двух полиморфных модификаций. Полиморфный переход между высокотемпературной -AB(1)- и низкотемпературной -AB(2)- модификациями протекает по перитектической реакции со стороны избытка обоих компонентов. Область моновариантного равновесия «твердая фаза AB(1)- твердая фаза AB(2)-пар» характеризуется неограниченной растворимостью в твердых фазах и наличием минимума азеотропного типа.

Построить Р-Т, Т-х и Р-х проекции Р-Т-х диаграммы по описанию

- Диаграмма бинарной системы A-B с четырьмя химическими соединением A₂B, AB, AB₂, AB₄ плавящимся конгруэнтно и сублимирующими инконгруэнтно,
- При этом со стороны компонента В имеет место эвтектическое равновесие, а стороны компонента А перитектическое.
- Между химическими соединениями имеют место эвтектические равновесия.
- Фазы А, В и АВ, существуют в ограниченном интервале температур.
- Кроме того, в фазе твердого раствора на основе компонента А наблюдается синтектоидное равновесие с температурой на 50 К ниже температуры перитектического равновесия.
- Фаза АВ существует в виде двух полиморфных модификаций. Полиморфный переход между высокотемпературной -AB(1)- и низкотемпературной -AB(2)- модификациями протекает по перитектической реакции со стороны избытка обоих компонентов. Область моновариантного равновесия «твердая фаза AB(1)- твердая фаза AB(2)-пар» характеризуется неограниченной растворимостью в твердых фазах и наличием минимума азеотропного типа.
- Максимальная температура плавления фазы AB(1) является абсолютно максимальной для твердых фаз в системе A-B. Минимальная температура их существования на 100 К ниже температуры плавления соответствующего доминирующего компонента. Максимальная температура плавления фазы AB является абсолютно максимальной для твердой фазы в системе A-B. Тройная точка компонента A по давлению лежит существенно ниже тройной точки компонента B, а по температуре существенно выше..

Различие между Р-Т, р_і-Т проекциями

$$\mu_A^i = \mu_A^{0i} + RT \ln x_A^i$$
$$\mu_A^v = \mu_A^{0v} + RT \ln p_A$$

Р-Х сечение

 $\mu_i(p_i)$ -Х сечение

 $\mu_A^i = \mu_A^{0i} + RT \ln x_A^i$ $\mu_A^v = \mu_A^{0v} + RT \ln p_A$

 $\mu_i(p_i)$ -Х сечение

 $\mu_A^i = \mu_A^{0i} + RT \ln x_A^i$ $\mu_A^v = \mu_A^{0v} + RT \ln p_A$

 $\mu_i(p_i)$ -Х сечение

 $\mu_A^{\gamma} = \mu_A^{\nu}$

 $\mu_A^{0\gamma} + RT \ln x_A^{\gamma} = \mu_A^{0\nu} + RT \ln p_A$

σ

 $\mu_i(p_i)$ -Х сечение

$$p_{A} = x_{A}^{\gamma} \cdot \exp\left(\frac{\mu_{A}^{0\gamma} - \mu_{A}^{0\nu}}{RT}\right) = x_{A}^{\gamma} \cdot p_{A}^{0\gamma}$$

$$p_{A}^{0\gamma}$$

$$p_{A}^{0\gamma}$$

$$p_{A}^{0\gamma}$$

$$p_{A}^{0\gamma} = x_{A}^{\gamma} \cdot p_{A}^{0\gamma}$$

$$p_{A}^{0s} = x_{A}^{\gamma} \cdot p_{A}^{0\gamma}$$

$$p_{B}^{0s} = x_{AB}^{\beta\gamma} \cdot p_{B}^{0\gamma}$$

$$\mu_{A}^{0\gamma}$$

$$\mu_{A}^{0\gamma} = x_{AB}^{\beta\gamma} \cdot p_{AB}^{0\gamma}$$

$$\mu_{A}^{0\gamma} = x_{AB}^{\beta\gamma} \cdot p_{AB}^{0\gamma}$$

$$\mu_{A}^{0\gamma} = x_{AB}^{\beta\gamma} \cdot p_{AB}^{0\gamma}$$

$$\mu_{A}^{0\gamma} = x_{AB}^{0\gamma} \cdot p_{AB}^{0\gamma}$$

$$\mu_{A}^{0\gamma} = x_{AB}^{0\gamma} \cdot p_{AB}^{0\gamma}$$

$$\mu_{A}^{0\gamma} = x_{AB}^{0\gamma} \cdot p_{AB}^{0\gamma}$$

 $\mu_i(p_i)$ -Х сечение

$$\overline{X}_{A} = \frac{x_{A} + x_{AB}}{1 + x_{AB}}$$

$$\overline{X}_{B} = \frac{x_{B} + x_{AB}}{1 + x_{AB}}$$

$$x_{AB} = \frac{\overline{X}_{A} - x_{A}}{1 - \overline{X}_{A}}$$

$$x_{B} = 1 - x_{A} - \frac{\overline{X}_{A} - x_{A}}{1 - \overline{X}_{A}}$$

 $\mu_i(p_i)$ -Х сечение

 $\mu_i(p_i)$ -Х сечение

69

1/T

