Роль водного фактора в неинфекционной, в том числе онкологической заболеваемости населения. Изучение влияния химического загрязнения воды на состояние здоровья человека.

Показатели благоприятных органолептических свойств питьевой воды

Показатели	Единицы измерения	Нормативы, не более	
Запах	баллы	2	
Привкус	баллы	2	
Цветность	градусы	20 (35)	
Мутность	ЕМФ (единицы мутности по формазину) или мг/л (по каолину)	2,6 (3,5) 1,5 (2)	

Обобщенные показатели качества природных вод

Показатели	Единицы измерения	Нормативы ПДК, не более	Показа- тель вред- ности	Класс опас- ности
1	2	3	4	5
Водородный показатель	единицы рН	в пределах 6 - 9		
Общая минерализация (сухой остаток)	мг/л	1000 (1500)		
Жесткость общая	мг-экв./л	7,0 (10)		
Окисляемость перманганатная	мг/л	5,0		
Нефтепродукты, суммарно	мг/л	0,1		
Поверхностно-активные вещества (ПАВ), анионоактивные	мг/л	0,5		
Фенольный индекс	мг/л	0,25		
Сульфаты (SO ₄ ²⁻)	мг/л	500	орг.	4
Хлориды (Cl ⁻)	мг/л	350	орг.	4
Железо (Fe, суммарно)	мг/л	0,3 (1,0)	орг.	3
Нитраты (NO ₃ ⁻)	мг/л	45	с-т	3

Показатели	Единицы измерения	Нормативы ПДК, не более	Пока- затель вред- ности	Класс опас- ности	
1	2	3	4	5	
Неорганические	вещества	в природных	водах		
Алюминий (Al^{3+}), барий(Ba^{2+}), бериллий (Be^{2+}). бор (B ,суммарно), кадмий (Cd , суммарно), марганец (Mn , суммарно), медь (Cu , суммарно), молибден (Mo , суммарно), мышьяк (As , суммарно), никель (Ni , суммарно), ртуть (Hg , суммарно), свинец (Pb , суммарно), селен (Se , суммарно), стронций (Sr^{2+}), хром (Cr^{6+}), цианиды (CN^{-}), цинк (Zn^{2+})	мг/л	0,0002 - 7,0		1 - 3	
Фториды для I и II климатического пояса	мг/л	1,5	С-Т	2	
Фториды для III климатического пояса	мг/л	1,2	С-Т	2	
Органические вещества в природных водах					
γ-ГХЦГ (линдан)	мг/л	0,002	с-г	1	
ДДТ (сумма изомеров)	мг/л	0,002	С-Г	2	
2,4-Д	мг/л	0,03	с-г	2	

Содержание вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения

Показатели	Единицы измерения	Нормативы ПДК, не более	Пока- затель вред- ности ¹⁾	Класс опас- ности
1	2	3	4	5
Хлор				
• остаточный свободный	мг/л	в пределах 0,3 – 0,5	орг.	3
• остаточный связанный	мг/л	в пределах 0,8 – 1,2	орг.	3
Хлороформ (при хлорировании воды)	мг/л	0,22)	C-T.	2
Озон остаточный	мг/л	0,3	орг.	
Формальдегид (при озонировании воды)	мг/л	0,05	С-Т.	2
Полиакриламид	мг/л	2,0	орг.	2
Активированная кремнекислота (по Si)	мг/л	10	орг.	2
Полифосфаты (по PO_4^{3-})	мг/л	3,5	орг.	3

Содержание химических веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека

Nº ⊓⊓	Наименование веществ	Количество нормируемых веществ по санитарно- токсикологическому признаку вредности	Количество нормируемых веществ по органолептическому признаку вредности			
	Нео	рганические веществ				
1. Элементы, катионы 17 1						
2.	Анионы	9	3			
	Орг	ганические вещества				
3.	Углеводороды	6	23			
4.	Галогенсодержащие соединения	36	38			
5.	Кислородсодержащие соединения	81	75			
6.	Азотсодержащие соединения	102	92			
7.	Серосодержащие соединения	18	38			
8.	Фосфорсодержащие соединения	17	48			
9.	Гетероциклические соединения	46	37			
10.	Элементоорганические соединения	19	1			
	ИТОГО	351	356			

Классификация качества питьевой воды по содержанию фтора

Nº п	Классификация воды по фтору	Концентраци я фтора в воде, мг/л	Пораженность населения патологией зубов
1.	Очень низкая концентрация фтора	до 0,3 мг/л	Пораженность населения кариесом зубов в 3-4 раза больше, чем при оптимальном содержании фтора.
2.	Низкая концентрация фтора	0,3 – 0,7 мг/л	Пораженность населения кариесом зубов в 2-3 раза больше, чем при оптимальном содержании фтора.
3.	Оптимальная концентрация фтора	0,7 — 1,1 мг/л	Пораженность населения кариесом зубов в 3-4 раза близка к минимальной.
4.	Повышенная, но еще допустимая концентрация фтора	1,1 — 1,5 мг/л	Заболеваемость населения кариесом зубов минимальная. Легкие формы флюороза наблюдаются у 20% населения.
5.	Концентрация фтора выше предельно- допустимой	1,5 – 2,0 мг/л	Пораженность населения кариесом зубов выше минимальной.Пораженность флюорозом отмечается у 30 – 40 % населения.
6.	Высокая концентрация фтора	2,0 — 6,0 мг/л	Пораженность населения кариесом зубов выше минимальной, 30 – 100 % населения поражения флюорозом, у многих отмечается тяжелая форма. Среди детей учащаются случаи отставания в развитии, окостетенения и минерализации костей.
7.	Очень высокая концентрация фтора	6 – 15 мг/л	Пораженность населения кариесом зубов значительно выше минимальной, до 80 – 100 % пораженность флюорозом.

Зависимость онкологической заболеваемости и смертности населения от условий водопользования

(на примере г. Цимлянска Ростовской области)

Изучаемые показатели	Онкологическая смертность 10	Кратность превышения показателей в г. Цимлянске	
	г. Цимлянск ст. Красноярская		
Общая онкологическая заболеваемость	593,6	280,0	> 2,0
Общая смертность от онкологических заболеваний	249,2	177,1	1,4
Онкологическая заболеваемость ЖКТ	146,5	64,8	2,3
Смертность от онкологических заболеваний ЖКТ	88,6	34,5	2,5
Онкологическая заболеваемость кожных покровов	133,1	21,6	6,2

Схема натурных исследований по изучению связи между химическим составом питьевой воды и состоянием здоровья населения

I этап

Изучение условий формирования качества воды источника водоснабжения

Характеристика первичных и вторичных источников загрязнения водоисточников

Характеристика зон санитарной охраны источника питьевого водоснабжения Оценка динамики качества воды источника водоснабжения (по годам и сезонам)

Выявление основных источников загрязнения водоема, классификация источника водоснабжения по характеру и степени его загрязнения, определение перечня дополнительно контролируемых показателей качества питьевой воды

Пэтап

Изучение качества питьевой воды в предварительно выбранных населенных пунктах

Углубленный химический анализ качества воды в соответствии с СанПином 2.1.4. 1074 – 01, а также с учетом рекомендаций ВОЗ (1993 г.) и возможных продуктов трансформации веществ

Биотестирование воды на водных гидробионтах и по тесту Эймса

Оценка качества по дифференцированным показателям

Ранжирование качества воды по степени возможного риска неблагоприятного влияния на организм

ППэтап

IV этап

Углубленное изучение условий водопользования обследуемых групп населения и общей химической водной нагрузки на организм

Изучение основных особенностей водопотребления с количественной и качественной характеристикой потребляемых вод

Определение среднесуточного поступления изучаемых химических веществ с питьевой водой

Определение доли среднесуточного потребления изучаемых химических веществ с питьевой водой от суммарного среднесуточного поступления их в организм из различных объектов окружающей среды

Выявление приоритетных для изучения показателей химического состава исследуемой питьевой воды, определение среднесуточных доз потребления изучаемых химических веществ с питьевой водой, вычленение доли водного фактора в общем поступлении их в организм

Расчет среднесуточной дозы (ССД) химических веществ, поступающих в организм с питьевой водой

$$CCД = \frac{C \cdot V \cdot F \cdot T_B}{W} \cdot \frac{1}{T_H}$$

С - концентрация химического вещества в питьевой воде, мг/л

V – средний объем потребляемой воды, л/сут

F – частота потребления воды, дни/год

Тв – продолжительность потребления воды, годы

Тн – время наблюдения – среднее время для которого расчитывается ССД, дни

W - масса тела, кг

V этап

VI этап

