
Принципы и методы гигиенического нормирования химических веществ в атмосферном воздухе

Спектр биологических ответов на воздействие загрязнений

- 1 смертность
- 2 заболеваемость
- 3 физиологические признаки болезни
- 4 физиологические и другие сдвиги неизвестного значения
- 5 накопление загрязнения в органах и тканях

Основные токсикометрические параметры при обосновании максимально-разовой и среднесуточной ПДК

• DL₅₀ - доза, вызывающая гибель 50% животных при введении вещества в желудок и последующем наблюдении 2 недели.

Выражена в мг вещества на 1 кг массы животного (мг/кг).

CL₅₀ - концентрация, вызывающая 50% гибель подопытных животных при однократном ингаляционном воздействии вещества при экспозиции 2-4 часа и последующего наблюдения в течение 2 недель.

Выражена в мг вещества на 1 м³ воздуха (мг/м³).

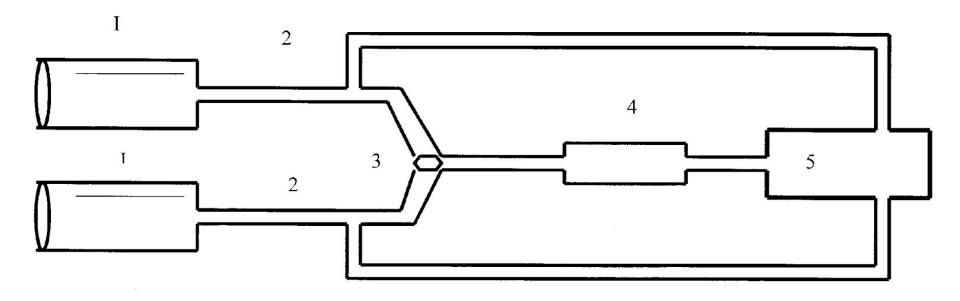
Lim_{oc} - порог однократного острого действия — минимальная концентрация, вызывающая изменение биологических показателей на уровне целостного организма, выходящих за пределы приспособительных реакций. Выражен в мг/м³.

Lim_{ir}- порог раздражающего действия на слизистые оболочки верхних дыхательных путей и глаз.

Выражен в Mr/M^3 .

Lim_{olf} - порог ощущения неспецифического запаха вещества, устанавливаемый волонтерами. Выражен в мг/м³.

Lim_{ch.int} - порог хронического общетоксического действия — минимальная концентрация вещества в атмосферном воздухе, при воздействии которой в организме возникают изменения, выходящие за пределы физиологических приспособительных реакций. Выражен в мг/м³.


Lim_{ch.sp} - то же по специфическому (аллергенному, мутагенному, эмбрио-, гонадотоксическому, нейтропному и др.) действию.

К₃ - коэффициент запаса – отношение порога ольфакторного или хронического действия к величине соответствующей ПДК.

ПДК_{м.р.} - предельно-допустимая 20-30 минутная концентрация динамического вещества в атмосферном воздухе населенных мест.

ПДК_{сс} - среднесуточная (24-часовая) концентрация динамического вещества в атмосферном воздухе населенных мест.

Лимитирующий показатель вредности – характеризует направленность вредного действия (рефлекторное, резорбтивное, санитарно-гигиеническое), наименьшая пороговая концентрация.

Схема экспериментальной установки для изучения рефлекторных реакций

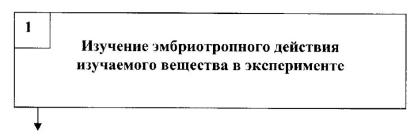
- 1 блок ингаляционного воздействия (цилиндры для подачи волонтерам заданной концентрации изучаемого вещества)
- 2 смесители
- 3 трехходовой кран
- 4 дозатор вещества
- 5 блок подготовки и подачи воздуха

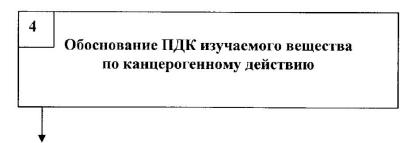
Принципиальная схема установки для проведения исследования при ингаляционном воздействии химических веществ

7. Затравочная камера

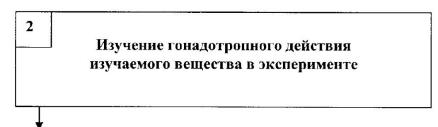
концентрации

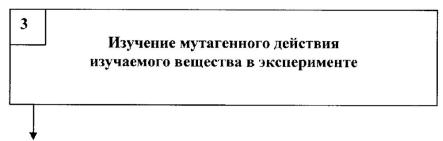
CXEMA


экспериментальных исследований по обоснованию ПДК химических веществ в атмосферном воздухе населенных мест


- Установление параметров острого действия CL₅₀, DL₅₀
- Установление пороговых и подпороговых концентраций общетоксического действия химического вещества в хроническом эксперименте на лабораторных животных.
- Установление пороговых и подпороговых концентраций аллергенного действия химического вещества в эксперименте на лабораторных животных.
- Обоснование величины ПДК по общетоксическому аллергенному действию.

CXEMA


экспериментальных исследований по изучению отдаленных эффектов при обосновании ПДК химических веществ в атмосферном воздухе населенных мест


- Изучение эмбриотоксического действия на беспородных белых крысах-самках.
- Изучение состояния здоровья потомства первого поколения
- Установление пороговой и подпороговой концентрации по эмбриотоксическому действию

 Установление пороговой и подпороговой концентрации химического вещества по канцерогенному действию при воздействии на животных в течение всей жизни

- Изучение влияния на женские и мужские гонады на белых крысах
- Изучение состояния здоровья потомства первого поколения
- Установление пороговой и подпороговой концентрации по гонадотропному действию

- Выявление мутагенов
- Количественная оценка мутагенной активности в опытах на млекопитающих
- Определение допустимой концентрации вещества по мутагенному действию

Нормативные методические документы

- Программы ВОЗ «Достижение здоровья для всех», «Здоровые города»
- Закон РФ № 7 ФЗ «Об охране окружающей среды», 2002
- Закон РФ «О санитарно-эпидемиологическом благополучии населения»
- Закон РФ № 96 ФЗ «Об охране атмосферного воздуха», 1999
- ГН 1.1.701-98 «Гигиенические критерии для обоснования необходимости разработки ПДК и ОБУВ вредных веществ в воздухе рабочей зоны, в атмосферном воздухе населенных мест, в воде водных объектов»
- Методические указания по обоснованию ПДК загрязняющих веществ в атмосферном воздухе населенных мест» № 4681-88
- Методические указания по установлению ОБУВ загрязняющих веществ в атмосферном воздухе населенных мест» № 2630-82
- ГН 2.1.61338-03 «ПДК загрязняющих веществ в атмосферном воздухе населенных мест»
- ГН 2.16.1339-03 «ОБУВ загрязняющих веществ в атмосферном воздухе населенных мест»
- Временные инструктивно-методические указания по оценке степени загрязнения атмосферного воздуха, 1977

Оценка степени загрязнения атмосферного воздуха населенных пунктов

Кратность превышения ПДК

Комплексные показатели

$$P = \frac{\sqrt{\sum K^2}}{\Pi \coprod K}$$

Где **ΣК** – сумма кратностей превышения ПДК, приведенных к таковым концентрациям веществ 3-го класса опасности.

$$K = \sum \left(\frac{C_1}{\Pi \angle I K_1}\right) \cdot 1,7 + \sum \left(\frac{C_2}{\Pi \angle I K_2}\right) \cdot 1,3 + \sum \left(\frac{C_3}{\Pi \angle I K_3}\right) \cdot 1,0 + \sum \left(\frac{C_4}{\Pi \angle I K_4}\right) \cdot 0,9$$

 C_1 , C_2 , C_3 , C_4 – измеренные концентрации веществ, относящиеся к 1, 2, 3, 4 классам опасности соответственно;

 Π Д K_1 , Π Д K_2 , Π Д K_3 , Π Д K_4 - нормативы для тех же веществ

Оценка загрязнения атмосферного воздуха

Уровень загрязнения	Величина индекса загрязнения Р при числе веществ			
	2 - 4	5 - 9	10 - 20	> 20
Допустимая	<=2	<=3	<=4	<=5
Слабая	> 2 - 4	> 3 - 6	> 4 - 8	> 5 - 10
Умеренная	> 4 - 8	> 6 - 12	> 8 - 16	> 10 - 20
Сильная	> 8 - 16	> 12 - 24	> 16 - 32	> 20 - 40
Очень сильная	> 16	> 24	> 32	> 40

Если в воздухе одновременно находятся вещества, обладающие суммированным действием, то:

$$\frac{C_1}{\Pi \cancel{\square} K_1} + \frac{C_2}{\Pi \cancel{\square} K_2} + \mathbb{I} + \frac{C_n}{\Pi \cancel{\square} K_n} \leq 1$$

где C1,C2,...,Cn –фактические концентрации веществ в атмосферном воздухе; ПДК1, ПДК2,..., ПДКn – предельно допустимые концентрации тех же веществ.

Вещества, обладающие суммированным (аддитивным) действием:

- диоксид серы и аэрозоль серной кислоты;
- диоксид серы и диоксид азота;
- диоксид серы и сероводорода;
- диоксид серы и фенол;
- диоксид серы и фтористый водород;
- диоксид и триоксид серы, аммиак, оксиды азота;
- диоксид серы, оксид углерода, фенол и пыль конверторного производства.