#### К. А. Шошенко

# Лекции по экологической физиологии

Лекция 1

Характеристика животных Обмен веществами животного с внешней средой. Базальный метаболизм

#### Все животные, как правило,

- 1. получают нужную для жизнедеятельности энергию с пищей,
- 2. используют в процессе метаболизма атмосферный кислород,
- 3. имеют двигательный (мышечный) аппарат, обеспечивающий им адаптацию во внешней среде.

#### Таблица 1

# Масса тела животных организмов. [73]

| Жгутиковый паразит диаметром 4 мкм           | 0.0000004 г   |  |
|----------------------------------------------|---------------|--|
| Свободно живущее простейшее диаметром 50 мкм | 0.00002 г     |  |
| Холоднокровные                               |               |  |
| Бычок филиппинский длиной 1 см               | 0.015 г       |  |
| Акула китовая длиной 33 м                    | 15 000 000 г  |  |
| Теплокровные                                 |               |  |
| Колибри красная                              | 2 г           |  |
| Землеройка карликовая белозубка              | 2.5 г         |  |
| Слон африканский                             | 7 500 000 г   |  |
| Кит синий                                    | 150 000 000 г |  |

Животные различаются не только по Мт, но и по форме тела. Форма тела важна, так как от нее зависит величина его относительной поверхности  $S_{\text{отн}}$  (ее площадь, приходящаяся на единицу Мт).

Для очень мелких организмов, например, для одноклеточных, через эту поверхность происходит обмен веществами с окружающей средой.

Для более крупных животных, особенно, для теплокровных, потери тепла из крови происходят с поверхностей, отделяющих животного от внешней среды — с поверхности легкого и, особенно много, с поверхности тела из кожных сосудов.

Для шара его объем U, внешняя и относительная поверхности тела, S и Sотн, равняются:

$$U = 4/3 \bullet \pi \bullet R^3$$
 (cm³)  $S = 4 \bullet \pi \bullet R^2$  (cm²) Sотн =  $S / M$  (cm²/г), где  $M$  - масса (г),  $\rho$  - плотность, равная  $M / U$  (г/см³) Sотн =  $3 \cdot \rho / R$ 

Видим, чем больше линейный размер шара (его R), тем меньше его относительная поверхность (S / M)

У шара наименьшая величина Soth. (при 
$$\rho = 1 \ \Gamma/\text{cm}^3$$
)  $S = 4.8 \cdot \text{M}^{0,67} \text{ (cm}^2$ )  $S / M = 4.8 \cdot \text{M}^{-0,33} \text{ (cm}^2/\Gamma$ )

$$4.8 (cm^2/\Gamma) = k,$$

коэффициент, учитывающий плотность структуры и переводящий показания M ( $\Gamma$ ) в показания S ( $CM^2$ )

# Таблица 2 Коэффициент k в уравнении $S = k \cdot M^{0..67}$ различается у животных, показывая различие их формы

# Для шара $k=4.8 \text{ cm}^2/\Gamma$

| $\mathbf{k}_{\mathbf{k}}$              | $cm^2/\Gamma$ |
|----------------------------------------|---------------|
| Байкальский тюлень с прижатыми ластами | 6.5           |
| Еж                                     | 7.5           |
| Овца                                   | 8.4           |
| Мышь, крыса, свинья, корова            | 8.4 –9        |
| Кролик, собака, лошадь                 | 10            |
| Обезьяна, человек                      | 11-12         |
| Птицы, рыба, лягушки. черепаха         | 10            |
| Змея                                   | <b>12</b>     |
| Летучая мышь                           | <b>58</b>     |

# Законы химии говорят:

Если в реакциях распада вещества начальные продукты одинаковы и конечные продукты одинаковы, то количество энергии, выделенное при этих реакциях, также одинаково

вне зависимости от стадий и скорости этого распада.

- Энергию для своей жизнедеятельности животные получают с пищей, в которую входят белки, жиры и углеводы.
- В пищеварительном тракте эти вещества расщепляются на аминокислоты, глицерин, жирные кислоты и моносахара и с кровью переносятся к клеткам.
  - В протоплазме клеток они превращаются в простейшую 2-углеродную форму СН<sub>3</sub>СО, которая с коферментом А транспортируется в митохондрии.
    - В митохондриях из них образуются молекулы  ${\rm CO}_2$  и электроны с протонами, которые с молекулой кислорода образуют воду.

Основная часть свободной энергии образуется в митохондриях

Таблица 3

|                |     | Калорийность, | Дыхательный |
|----------------|-----|---------------|-------------|
| Калорический   |     | ккал/г        | коэффициент |
| эквивалент О2, |     | KK431/1       | коэффицисит |
| ккал/л         |     |               |             |
| Углеводы       | 4,2 | 1,00          | 5,05        |
| Белки          | 4,6 | 0,80          | 4,76        |
| Жиры           | 9,4 | 0,71          | 4,65        |

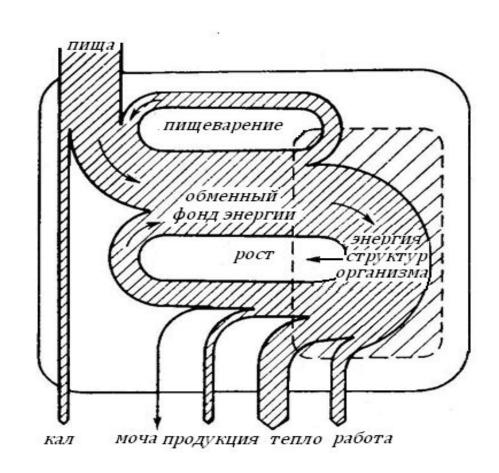
Дыхательный коэффициент ДК – отношение объема выделенного СО, Для расчетов при сменцанинай регисть страйностью 4.8 ккал: Чем меньшевли от разтемь выделение объема выделенного СО, Интеристричения прастемы страйностью 4.8 ккал: Чем меньшевли от разтемы оккина страйна объема выделенного СО, Для расчетов при смену смену

## Прямая калориметрия-

-измерение выделяемого организмом тепла в специальных термоизолированных камерах позволяет определить количество энергии, потраченной на различные типы деятельности.

#### Непрямая калориметрия-

-оценка поступившей и израсходованной в организме энергии по количеству потребленного им кислорода


#### **Рис.** 1. Схема энергетического обмена животного [66]

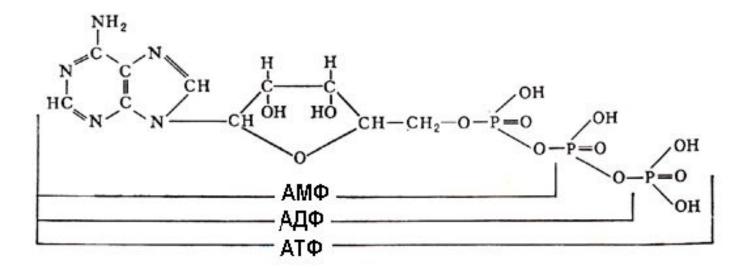
# Поступившая с пищей энергия используется для:

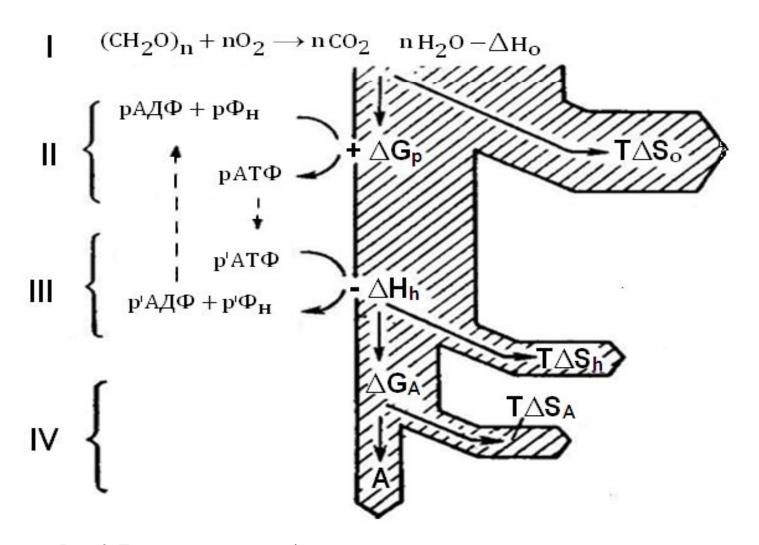
- · обменных процессов
- · структурных изменений
- внешней работы
- внешней продукции

При этом большая часть энергии переходит

· в тепло (40-50%)







Рис. 2. Схема молекулы аденозинтрифосфорной кислоты [80]

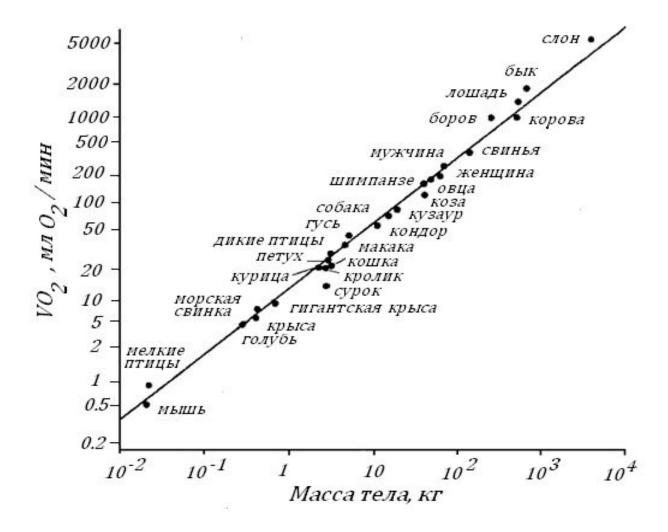
# Фосфатную связь в аденозинфосфатах называют <u>энергетической валютой</u>.

Ее разрыв в АТФ происходит в местах, необходимых для жизнедеятельности клетки - клетка «расплачивается» ею за энергоемкие процессы: синтез веществ, транспорт веществ в клетке и через внешнюю мембрану, мышечное сокращение, электрические потенциалы.

При этом 1 M ATФ при разрыве одной связи выделяет от 7.3 до 3.4 ккал в случае разрыва последней связи в АМФ

Образование фосфатных связей происходит в протоплазме, но, в основном, в Мх. [29].




**Рис.** 3. Главные этапы трансформации энергии в организме животного на примере окисления углеводов  $(CH_2O)_n$  [66]. I — окисление (о), II — фосфорилирование (р), III — расщепление, гидролиз (h) АТФ, IV — физиологическая работа (A); n и р — число молей кислорода и неорганического фосфата (Фн). Подробности о видах энергии,  $\Delta H$ ,  $\Delta Gp$  и  $T\Delta S_0$  в тексте.

# Примерные подсчеты показывают [66]: энергия, запасенная в фосфатных связях АТФ и АДФ, расходуется на:

- 20-25% обновление ферментов и структур клетки,
- 10-12% осмотическую работу по переносу ионов,
- 12-15% работу сердца и дыхательных мышц

В условиях двигательного и эмоционального покоя, комфортных температуры и влажности среды, при отсутствии работы пищеварительного тракта и специфически-динамического действия пищи потребление энергии в организме животного становится минимальным.

Уровень минимальных энерготрат, при котором поддерживается жизнедеятельность клеток и тканей, называют основным обменом или базальным метаболизмом (БМ)



*Рис. 4.* Интенсивность базального метаболизма в зависимости от массы тела теплокровного, [73].

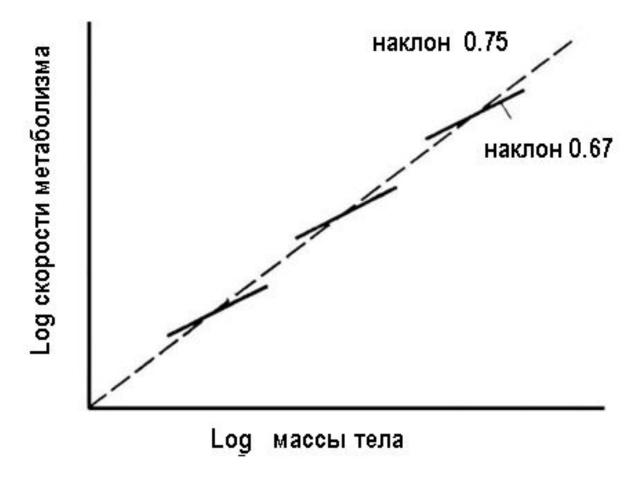
БМ (ккал/сут) = 70 Мт (кг) $^{0.75}$ 

БМ (мл  $0_2$ /мин) = 10 Мт (кг) $^{0.75}$ 

БМ (мл  $0_2$  /(мин·кг) = 10 Мт (кг)<sup>-0,25</sup>

Таблица 4
Базальный метаболизм и относительная поверхность тела у млекопитающих с разной массой тела [71]

| Животное            | Мт,<br>кг | БМ,<br>мл 0 <sub>2</sub> /(мин·кг) | Поверхность<br>тела, см <sup>2</sup> /г |
|---------------------|-----------|------------------------------------|-----------------------------------------|
| Землеройка          | 0.005     | 123                                | 5.3                                     |
| Малый прыгун        | 0.015     | 30                                 | 3.7                                     |
| Суслик              | 0.096     | 17                                 | 2.0                                     |
| Крыса               | 0.29      | 14                                 | 1.4                                     |
| Кошка               | 2.5       | 11                                 | 0.76                                    |
| Собака              | 12        | 5.5                                | 0.45                                    |
| Человек             | 70        | 3.5                                | 0.28                                    |
| Лошадь              | 650       | 1.8                                | 0.10                                    |
| Слон                | 3833      | 1.2                                | 0.07                                    |
| Кратность изменения | 766600    | 102                                | 75                                      |


Таблица 5
Температура тела плацентарных млекопитающих с разной массой тела (Morrison, Ryser, 1952), по: [73]

| Масса тела, кг | Число<br>видов | Температура тела, <sup>о</sup> С |         |
|----------------|----------------|----------------------------------|---------|
|                |                | границы                          | средняя |
| 0.001-0.01     | 2              | 37.8-38.0                        | 37.9    |
| 0.01-0.1       | 11             | 35.8-40.4                        | 37.8    |
| 0.1-1.0        | 12             | 35.8-39.5                        | 37.8    |
| 1.0-10         | 17             | 36.4-39.5                        | 38.0    |
| 10-100         | 8              | 36.0-39.5                        | 37.9    |
| 100-1000       | 6              | 36.4-39.5                        | 37.8    |
| 1000-10000     | 2              | 35.9-36.1                        | 36.0    |
| 10000-100000   | 4              | 36.5-37.5                        | 37.1    |

У всех плацентарный млекопитающих температура ядра тела равна  $37.8 \pm 0.4 \ C^{\circ}$ . у птиц  $40\text{-}42^{\circ}C$ 

Таблица 6. Базальный метаболизм у млекопитающих (Davson, Hulbert, 1970), по: [55]

| Показатель                                                                  | Млекопитающие |          |              |
|-----------------------------------------------------------------------------|---------------|----------|--------------|
|                                                                             | однопроходные | сумчатые | плацентарные |
| Т тела, <sup>о</sup> С                                                      | 30.0          | 35.5     | 38.0         |
| БМ, мл О <sub>2</sub> □кг <sup>-0.75</sup><br>□мин <sup>-1</sup> при Т тела |               |          |              |
| □мин <sup>-1</sup> при Т тела                                               | 4.9           | 7.1      | 10           |
| при 38 <sup>о</sup> С                                                       | 9.0           | 9.0      | 10           |



**Рис. 5.** Коэффициент b, равный 0.75 для ряда теплокровных на рис. 4, может оказаться «статистическим артефактом», в случае использования данных для разных видов животных (на рисунке показаны 3 вида от мыши до быка), зависимость метаболизма каждого из которых соответствует а·Мт<sup>0.67</sup> (Heusner, 1982), по: [73].

Величина БМ зависит от возраста: чем больше возраст, тем ниже БМ. Привожу формулы, учитывающие этот фактор у человека:

для мужчин

$$\mathrm{EM} = 71.2 \; \mathbf{x} \; \mathrm{M} \mathrm{T}^{0.75} \; \mathrm{x} \; [1 - 0.004 \; \mathrm{x} \; (30 - \mathrm{A}) + 0.010 \; \mathrm{x} \; (\mathrm{B} - 43.4)],$$
 для женщин  $\mathrm{EM} = 65.8 \; \mathrm{x} \; \mathrm{M} \mathrm{T}^{0.75} \; \mathbf{x} \; [1 - 0.001 \; \mathrm{x} \; (30 - \mathrm{A}) + 0.018 \; \mathrm{x} \; (\mathrm{B} - 42.1)],$ 

где БМ - ккал/сут; Мт - кг; А- возраст, годы; В - рост, см / Мт<sup>0.33</sup>, кг.

Например, у женщины

Мт 60 кг (
$$60^{0.75} = 21.6$$
), A 25 лет, рост 165 см, В  $165/60^{0.33} = 42.7$  БМ =  $65.8 \times 21.6 \times [1-0.001 \times 5 + 0.018 \times (42.7 - 42.1)] = 1430 \cdot \text{ккал/сут}$ .

Согласно этим уравнениям, после 30 лет ВМ снижается ежегодно на 0.4%. [62].

#### Задача 1

Съели 50 г белков, 29 г жиров и 200 г углеводов

Сколько калорий потребили? Сколько кислорода использовали?

Калорийность, ккал/г: белков 4.2, жиров 9.4, углеводов 4.6

1 ккал = 208 мл  $O_2$  1л  $O_2$ = 4.8 ккал

#### Решение задачи 1

## Потребили калорий

$$50 \cdot 4.2 = 210$$
 ккал

$$29 \cdot 9.4 = 272.6$$
 ккал

$$200 \cdot 4.6 = 920$$
 ккал

Всего 1402.6 ккал

#### Израсходовали кислорода

$$1402.6 \cdot 208 = 291740.8 \text{ мл O}_{\mathbf{2}}$$
  $292 \text{ л O}_{\mathbf{2}}$ 

#### Задача 2.

## Найти поверхность тела, общую и относительную,

$$S = k \cdot M T^{0.67}$$
 для  $M T$ 

у мыши 30 г (
$$\mathbf{k} = 8 \text{ cm}^2/\Gamma$$
,  $\mathbf{M} \mathbf{T}^{0.67} = 9.765 \Gamma$ )

у человека 
$$6 \cdot 10^4 \, \Gamma \, (\mathbf{k} = 12 \, \text{cm}^2 / \Gamma, \, \mathbf{M} \mathbf{T}^{\mathbf{0.67}} = 1589.9 \, \Gamma)$$

у слона 
$$3 \cdot 10^6$$
 г ( $\mathbf{k} = 10 \text{ см}^2/\Gamma$ ,  $\mathbf{M} \mathbf{T}^{0.67} = 21861 \Gamma$ )

#### Решение задачи 2

Мышь  $8 \cdot 30^{0.67} = 78 \text{ cm}^2 \text{ или } 78 \text{ / } 30 = 2.6 \text{ cm}^2/\Gamma$ 

Человек  $12 \cdot (60000)^{0.67} = 19078 \text{ cm}^2$   $19078 / 60000 = 0.32 \text{ cm}^2/\Gamma$ 

Слон  $10 \cdot (3000000)^{0.67} = 218611 \text{ cm}^2$   $218611 / 3000000 = 0.073 \text{ cm}^2/\Gamma$ 

# Задача 3

#### Найти БМ для тех же животных

БМ (ккал/сут) = 70 Мт (кг)
$$^{0.75}$$
  
БМ (мл  $0_2$ /(мин·кг) = 10 Мт (кг) $^{-0.25}$ 

# $MT (\kappa \Gamma)^{0.75}$

у мыши 0.0721 кг, человека 21.56 кг, слона 405.36 кг

#### Решение задачи 3

## Задача 2.

# Найти поверхность тела, общую и относительную,

$$S = k \cdot M T^{0.67}$$
 для  $M T$ 

у мыши 30 г (
$$\mathbf{k} = 8 \text{ cm}^2/\Gamma$$
,  $\mathbf{M} \mathbf{T}^{0.67} = 9.765 \Gamma$ )

у человека 
$$6.10^4$$
 г ( $\mathbf{k} = 12 \text{ cm}^2/\Gamma$ ,  $\mathbf{M} \mathbf{T}^{\mathbf{0.67}} = 1589.9 \Gamma$ )

у слона 
$$3 \cdot 10^6$$
 г ( $\mathbf{k} = 10 \text{ cm}^2/\Gamma$ ,  $\mathbf{M} \mathbf{T}^{0.67} = 21861 \Gamma$ )