ФИЗИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ И ЯВЛЕНИЙ, ЛЕЖАЩИЕ В ОСНОВЕ МЕТОДОВ ПОЛУЧЕНИЯ ИНФОРМАЦИИ О СТРУКТУРНЫХ ХАРАКТЕРИСТИКАХ МАТЕРИАЛОВ

Винтовая дислокация в кристалле:

в) Плоские дефекты

Г) Объемные дефекты: поры, включения второй фазы

Чугун: серый Включения графита: пластинчатые

высокопрочный

ковкий

шаровидные

хлопьевидные

3. Поликристаллы

Поликристалл состоит из множества реальных мелких монокристаллов

Углеродистая сталь

Атомная модель структуры нанокристалла Оксид урана

Алюминий

Микрофотография стыка границ зерен керамики ZrO₂

Графитовые частицы, полученные из сажи при сгорании бензина

Дифракционные методы исследования структурного состояния материалов

Схема рентгеновской трубки для структурного анализа: 1 – металлический анодный стакан;
2 - окна из бериллия для выхода рентгеновского излучения; 3 -термоэмиссионный катод;
4 -стеклянная колба; 5 – выводы катода, к которым подводится напряжение накала, а также высокое(относительно анода) напряжение; 6 электростатическая система фокусировки электронов;
7 - анод; 8 - патрубки для охлаждающей системы.

Рис.2

Рентгеновская трубка серии БСВ для структурного анализа

Рис.3 Спектры тормозного излучения для разных величин ускоряющего напряжения трубки

Рис.4. Схемы возникновения характеристического рентгеновского излучения

Рис.5

Вид рентгеновских спектров излучения для трубок с молибденовым (Мо) и медным (Cu) анодами.

Кристаллографические плоскости. Индексы Миллера

Рис. 6. Семейство плоскостей (231)

Кристаллографические плоскости.Индексы Миллера

Рис. 7. Кристаллографические плоскости.

Рис. 8. Отражение падающих лучей семейством плоскостей

Условия Лауэ - условия возникновения дифракционного максимума в кристаллах:

$$\begin{array}{l} a(\cos\varphi_{1} - \cos\varphi_{o1}) = h\lambda \\ b(\cos\varphi_{2} - \cos\varphi_{o2}) = k\lambda \\ c(\cos\varphi_{3} - \cos\varphi_{o3}) = l\lambda \end{array}$$

Рис. 9. К выводу уравнения Вульфа-Брэггов

Существует три метода получения дифракционной картины:

Схема получения лауэграммы (а); вид дифракционной картины для кристалла (б): эллипсы, проведенные через рефлексы, пересекаются в точке, соответствующей оси симметрии 4-го порядка [и у w]

Рис. 12. Кристаллографическая зона

Произвольная установка (Тонкими линиями показаны зональные кривые.

Первичный пучок направлен вдоль оси симметрии 2-го порядка Рис. 13 Лауз

Первичный пучок направлен вдоль оси симметрии 6-го порядка

Рис. 13 Лауэграммы берилла Al₂Be₃Si₆O₁₈

<u> 2. Метод вращения Исследуемый образец – монокристалл,</u>

излучение монохроматическое

Рис. 14. а) схема получения рентгенограммы вращения; б) рентгенограмма вращения монокристалла фуллерита С60

$$J = \frac{n\lambda \sqrt{L_n^2 + R^2}}{L_n}$$

Рис. 15. Рентгенограмма вращения монокристалла миоглобина

3._Метод порошка (Дебая – Шеррера)

Рис. 16. Камера Дебая;

Рис. 17. Установка камеры Дебая на рентгеновском аппарате

Рис. 18.Схема съемки рентгенограммы по методу Дебая — Шеррера:

Рис. 19. Схема дебаеграммы

Рис. 20. Фотография дебаеграммы сплава Fe-Al

Расчет дебаеграмм, полученных фотометодом

Рис. 24. Фотография дебаеграммы полученной на немонохроматическом излучении

Табл. 1. Ошибка в определении межплоскостных расстояний при различных значениях угла скольжения (∆θ =3')

<i>θ</i> (град)	20	40	50	60	70		
$\pm \Delta d/d$ (%)	0.275	0.120	0.084	0.058	0.036		
<i>θ</i> (град)	75	80	82	84	85		
$\pm \Delta d/d$ (%)	0.027	0.018	0.014	0.010	0.008		

Индицирование рентгенограмм поликристаллов

Табл. 2. Индексы интерференции hk/, их сумма квадратов h²+ k²+l² и отношение (Qт) квадратов синусов брэгговских углов всех отражений к квадрату синуса брэгговского угла первого отражения для простой, объемноцентрированной, гранецентрированной и алмазной кубических решеток.

Простая кубическая																		
hk/	100	110	111	200	210	211	220	300	310	311	222	320	321	400	410	322	411	330
h²+ k²+ <i>l</i> ²	1	2	3	4	5	6	8	9	10	11	12	13	14	16	17	17	18	18
Q ₊	1	2	3	4	5	6	8	9	10	11	12	13	14	16	17	17	18	18
Объемноцентрированная кубическая																		
hk/		110		200		211	220		310		222		321	400			411	330
h²+ k²+ /²		2		4		6	8		10		12		14	16			18	18
Q		1		2		3	4		5		6		7	8			9	9
Гранецентрированная кубическая																		
hk/			111	200			220			311	222			400				
h²+ k²+ <i>l</i> ²			3	4			8			11	12			16				
Q _T			1	1.33			2.67			3.67	4			5.33				
Алмазная кубическая																		
hk/			111				220			311				400				
h²+ k²+ <i>l</i> ²			1				8			11				16				
Q _T			1				2.67	_		3.67	_			5.33				

Табл. 3. Связь между величиной, обратной квадрату межплоскостного расстояния, и периодами решетки; квадратичные формы

Решетка	$1/d_{hkl}^2 =$	квадратичная форма sin ² θ =
Кубическая	$(h^2 + k^2 + l^2)/a^2$	$\frac{\lambda}{4a^2}(h^2+k^2+l^2)$
Тетрагональная	$(h^2 + k^2)/a^2 + l^2 / c^2$	$\frac{\lambda}{4a^2}(h^2 + k^2 + l^2 \frac{a^2}{c^2})$
Ромбическая	$h^2/a^2 + k^2/b^2 + l^2/c^2$	$\frac{\lambda}{4a^2}(h^2 + k^2\frac{a^2}{b^2} + l^2\frac{a^2}{c^2})$
Гексагональная	$4(h^2 + hk + k^2)/3a^2 + l^2/c^2$	$\frac{\lambda}{4a^2} [\frac{4}{3}(h^2 + hk + k^2) + l^2 \frac{a^2}{c^2}]$

Расчет периода элементарной ячейки

$$a_{hkl}^{\text{\tiny MHK}} = a_0 + kx(\theta); \quad x(\theta) = \cos^2 \theta;$$

$$\Delta a_0 = \sqrt{\frac{\sum_{m} (a_{hkl} - a_{hkl}^{\text{MHK}})^2}{m(m-1)}}$$

Рис.29. Зависимости периодов а, b, c/3 элементарной ячейки керамики YBa_{2-x}La_xCu₃O_{7-δ} от содержания лантана

Рис.30. Зависимости периодов a, b и с элементарной ячейки керамики $Y_{\alpha}Ba_{2}Ti_{\beta}Cu_{\gamma}O_{7-\delta}$ от величины $x=\beta/(\alpha+2+\gamma)$.

Рис. 3 1. Температурная зависимость параметра элементарной ячейки c: экспериментальные точки (1), аппроксимация экспериментальных данных (2), зависимость КТР α_c от температуры (3).

Аппроксимационные кривые разбивались на температурные отрезки длиной 0.7–1.5 K, на которых расчет КТР проводился согласно формуле $\alpha_L = \frac{1}{L} \frac{\Delta L}{\Delta T}$, где L параметр элементарной ячейки, соответствующий середине отрезка ΔT , ΔL — изменение параметра на этом отрезке.

Рентгеновский дифрактометр ARL X'TRA

Рис. 21.

Рентгеновский дифрактометр ДРОН-6

ГУР-9;

Рис. 23. Дифракционная картина берилла