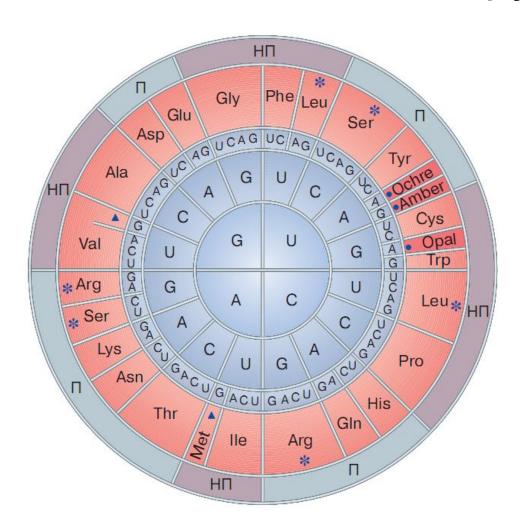

Генетический код

Сущность ГК

Способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов

Сколько нужно комбинаций?

Как алфавитом из 4 букв записать слово, состоящее из 20-ти? Очевидно, одной аминокислоте должно соответствовать несколько нуклеотидов.


Кол-во нуклеотидов	Число аминокислот
1	4
2	16
3	64

Генетический код триплетен

Аминокислоты		кислоты	Нуклеотиды (кодоны)	
A	Ala	Аланин	GCA GCC GCG GCU	
C	Cys	Цистеин	UGC UGU	
D	Asp	Аспарагиновая кислота	GAC GAU	
E	Glu	Глутаминовая кислота	GAA GAG	
F	Phe	Фенилаланин	UUC UUU	
G	Gly	Глицин	GGA GGC GGG GGU	
H	His	Гистидин	CAC CAU	
1	Ile	Изолейцин	AUA AUC AUU	
K	Lys	Лизин	AAA AAG	
L	Leu	Лейцин	UUA UUG CUA CUC CUG CUU	
M	Met	Метионин	AUG	
N	Asn	Аспарагин	AACAAU	
P	Pro	Пролин	CCA CCC CCG CCU	
Q	Gln	Глутамин	CAA CAG	
R	Arg	Аргинин	AGA AGG CGA CGC CGG CGU	
S	Ser	Серин	AGC AGU UCA UCC UCG UCU	
T	Thr	Треонин	ACA ACC ACG ACU	
V	Val	Валин	GUA GUC GUG GUU	
W	Trp	Триптофан	UGG	
Y	Tyr	Тирозин	UAC UAU	

Каждая аминокислота кодируется 3-мя нуклеотидами (кодоны). Генетический код вырожден - одной аминокислоте может соответствовать несколько кодонов.

Генетический код в круговой форме

Вырожденность. Нонсенсы.

Код сравнительно прост - непросто было до него догадаться!

Понятие гена

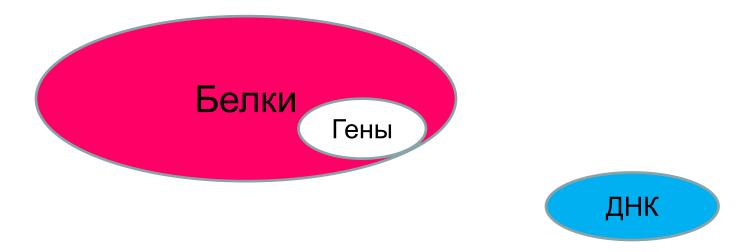
Вильгельм Иоганнсен, 1909

«..свойства организмов обуславливаются особыми, при известных обстоятельствах отделимыми друг от друга и в силу этого до известной степени самостоятельными единицами или элементами в половых клетках, которые мы называем генами..»

Генетиков не сильно интересовал вопрос о природе гена. Они считали, что этот вопрос лежит за пределами их науки.

Кольцовская школа – ген апериодическкая полимолекула (белкового происхождения).

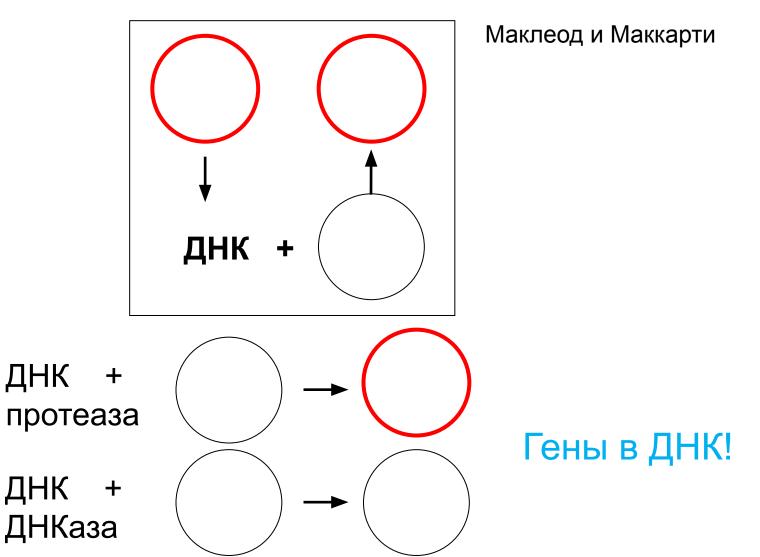
30 гг. XX века (Европа) подъем физики и вера в ее всемогущество.


Макс Дельбрюк – вопрос о физической природе гена. Н. В. Тимофеев-Ресовский. Переезд в США и создание «фаговой группы».

Гены в белках или ДНК?

Среди веществ, выделяемых из живых клеток огромным разнообразием отличались белки.

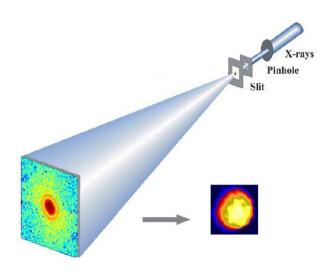
Поэтому ученые долгое время небезосновательно считали, что гены сосредоточены в белках.

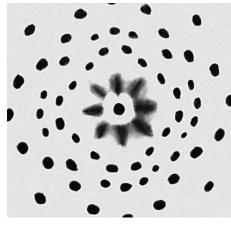


ДНК, которая была обнаружена в клеточных ядрах еще в 1868г. считалась регулярным полимером, а потому не может передавать никакой информации.

Эксперименты гр. О.Эвери, 1944 г.

ДНК

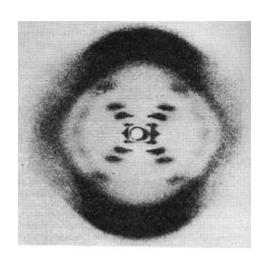

ДНК



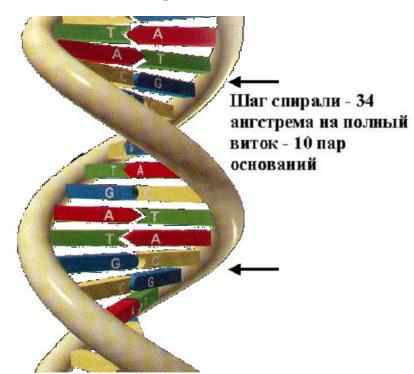
Определение структуры ДНК

Рентгенограмма кристалла миоглобина

Рентгеноструктурный анализ

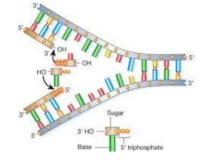


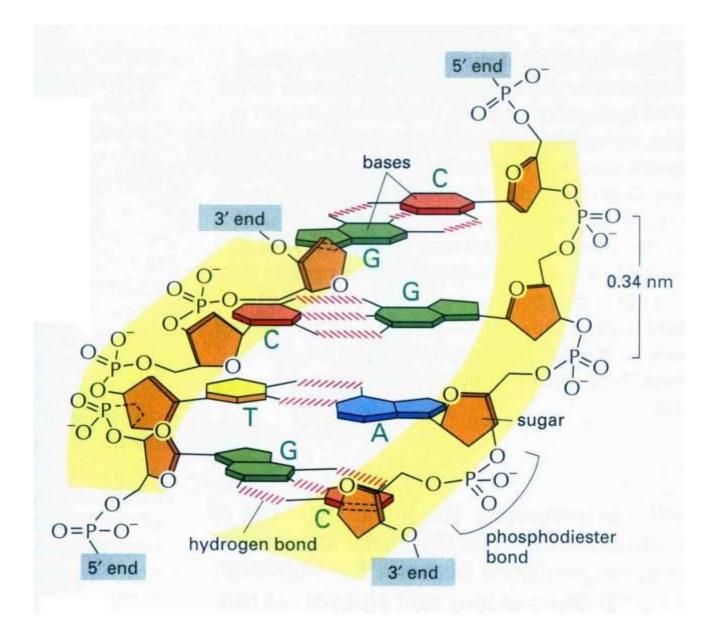
NaCl

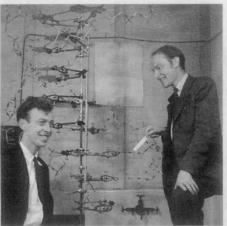

400 - 6A 10000 - 2 A 25000 - 1,4 A

ДНК

Двойная спираль


Диаметр двойной спирали ДНК 20 ангстрем


принцип комплементарности: А-Т, Г-Ц

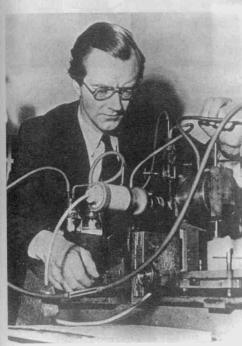

Джим Уотсон и Фрэнсис Крик, 1953

Двухцепочечное строение молекулы ДНК позволяло дать простое объяснение процессу репликации (удвоения) генов при делении клетки.

Кембридж

Джим Уотсон (слева) и я перед демонстрационной моделью двойной спирали РНК летом 1953 г. (Фото из книги)

Джим Уотсон. Таким он появился на страницах августовского номера журнала Vogue, 1954: со сметенным взглядом британского поэта



Фрэнсис Крик в клубном гал

Лондон

фотопортрет Розалинд Фрэнклин, сделанный, когда ей было около двадцати шести. (Публикуется благодаря любезности Дженифер Глинн, Кембридж)

Морис Уилкинс, примерно 1995 г. (Публикуется благодаря любезности Мориса Уилкинса)

Эрвин Чаргафф – данные о частоте встречаемости нуклеотидов в ДНК различных организмов.

Если гены в ДНК – значит есть код!

В 1954 г. Георгий Гамов предположил, что кодирование информации в молекулах ДНК осуществляется сочетаниями нескольких нуклеотидов (из соображений минимальности - тремя).

Ошибочная идея о перекрываемости кодонов.

Снова Уотсон и Крик

- ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
- ABC ABC XAB CAB CAB CAB CAB CAB CAB CAB CAB

- ABC ABC
 BCA BCA BCA BxC ABC ABC ABC ABC ABC ABC

Мутации со сдвигом рамки

- код триплетен, кодоны не перекрываются
- код линеен и не содержит знаков препинания

Как же выглядит код?

<u>1961 г. М. Ниренберг и Г. Маттеи</u> - синтез белков в бесклеточной системе *E.coli*.

В каждой из 20 пробирок имелись все клеточные компоненты бактерии (кроме нуклеиновых кислот) и все 20 аминокислот, одна из которых содержала радиоактивную метку. В одном из экспериментов в качестве матрицы добавили в реакционную смесь полиуридиловую кислоту (РНК, состоящую из урацилового нуклеотида). В результате в 1000 раз увеличилось включение меченой аминокислоты фенилаланина. Кодон UUU кодирует фенилаланин.

Последующие эксперименты по прямой расшифровке генетического кода *in vitro*.

Свойства генетического кода

Код триплетен (включает 61 кодирующих и 3 некодирующих кодона);

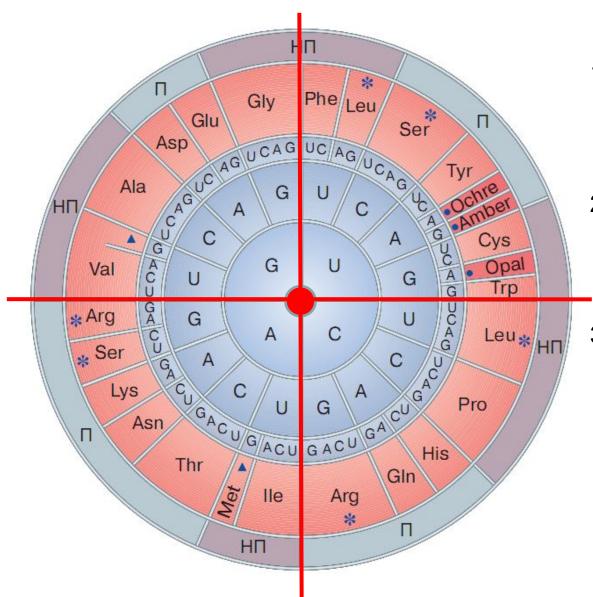
Вырожденность - многие аминокислоты шифруются несколькими триплетами (запас прочности при точечных мутациях);

Специфичность - каждый триплет кодирует только одну определенную аминокислоту;

Непрерывность и неперекрываемость кодонов;

Генетический код универсален (исключения наблюдаются в митохондриальной ДНК).

Регулярность кода


First position (5' end)	Second position			Third position (3' end)	
	U	С	Α	G	
	Phe	Ser	Tyr	Cys	U
U	Phe	Ser	Tyr	Cys	C
	Leu	Ser	Stop	Stop	Α
	Leu	Ser	Stop	Trp	G
	Leu	Pro	His	Arg	U
C	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
	Ile	Thr	Asn	Ser	U
Α	Ile	Thr	Asn	Ser	C
	Ile	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	U
G	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

Все аминокислоты непо- Все аминокислоты малярны, не крайних свойств лые, а основы сильные и размеров

ные и не малые, а основы Нокислот и аномалии сеслабые

Все аминокислоты поляр- Крайние варианты амирий

Симметрия кода

- Поворот на 180 градусов

 сильные и слабые
 основы сохраняют свои
 позиции;
- Отражение по вертикали

 сильные и слабые
 основы меняются
 местами;
- 3. То же при отражении по горизонтали.

Что дает знание генетического кода?

Генетика.

Направления геномики:

- •<u>Структурная геномика</u> идентификация видов «штрихкод жизни»);
- •<u>Фармакогеномика</u> влияние индивидуальных генетических различий на безопасность и эффективность лекарственных препаратов;
- •<u>Нутригеномика</u> вопросы формирования диеты на основе тестирования генов, принимающих участие в процессах детоксикации, оксидативного стресса, метаболизма липидов, витамина В, фолиевой кислоты, кальция, инсулинового статуса;
- •<u>Клиническая геномика</u> диагностика наследственных болезней, генотерапия.

Литература

Научно-популярная статья

Ратнер В.А. Генетический код как система, Соросовский образовательный журнал №3, 2000, 17-22

Подлиннее..

Франк-Каменецкий М.Д. Самая главная молекула, Библиотечка Квант. Выпуск 25, М. Наука, 1988

Добротный университетский букварь

Албертс Б., Брей Д., Льюис Дж. Молекулярная биология клетки (в 5 т.), М. Мир, 1994

Для тех, кто не успокоится

Сингер М., Берг П. Гены и геномы (в 2 т.), М. Мир, 1998

Просто хорошая книжка об ученых, генетике, физике нач. XX в. Гранин Д. Зубр, Л. Советский писатель, 1987