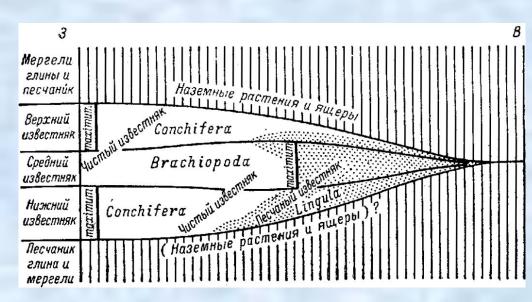
Геохронология

Какие геохронологические методы существуют?


Что относится к методам относительной и абсолютной геохронологии?

Основные принципы, на которых базируются методы относительной геохронологии

- <u>1.Принцип Н.Стенона</u> (1669) при ненарушенном залегании каждый нижележащий слой древнее покрывающего слоя.
- 2. <u>Принцип Гексли (гомотаксиса или идентичности)</u> соответствие слоев в разных разрезах по признакам, одинаково упорядоченным в каждом разрезе.
- 3. <u>Принцип хронологической заменяемости признаков (принцип Мейена)</u> возможность подмены несамостоятельных признаков (редких) самостоятельными.

Основные правила стратиграфии

- 1. <u>Правило Смита</u> одновозрастные осадки содержат одни и те же близкие остатки ископаемых организмов.
- 2. <u>Правило Геттона («закон пересечений»)</u> секущая магматическая порода всегда моложе той породы, которую она «рассекает».
- 3. Закон Долло о необратимости эволюции организм никогда не может вернуться к предковому состоянию, даже если он окажется в обстановке близкой к условиям обитания предков.

• 4. <u>Правило Головкинского</u> - в непрерывном разрезе осадочных толщ друг над другом отлагаются осадки, которые могут образоваться рядом (по латерали) на поверхности в суши или на дне бассейна седиментации. При трансгрессии и регрессии моря смена осадков по вертикали соответствует их горизонтальной зональности. В каждой осадочной толще одновозрастные лишь те осадки, которые простирались параллельно береговой линии древнего бассейна.

Биостратиграфия (палеонтологические методы)

- 1. **Архистратиграфические или руководящие группы организмов** позволяют проводить планетарные корреляции: планктонные и нектонные организмы, быстро расселявшиеся по свету.
- 2. Парастратиграфические группы региональная биостратиграфия: бентос, расселявшийся только на личиночной стадии.
- Для закрытых районов крайне важны микрофоссилии (фораминиферы, радиолярии, остракоды, конодонты, некоторые одноклеточные водоросли, споры и пыльца).

		Стра	тираф	нческ ое зн	ачение г	лав ных :	групп м	рских бе	СТЮ ЗВ ОН	хіми		
	Фораминиферы	Радиолярии	Археоциаты	Коралловые полипы	Брахиоподы	Пелециподы	Гастроподы	Цефалоподы	Трилобиты	Остракоды	Иглокожие	Граптолиты
Кайнозой		(t)					3					
Мел									8			
Юра			3						×			
Триас					-		-	i i				
		St. 3			6			3				
Пермъ Карбон			g G									
Девон												
8								,				
Силур												
Ордовик												
50												
Кембрий												
-												

Группы:

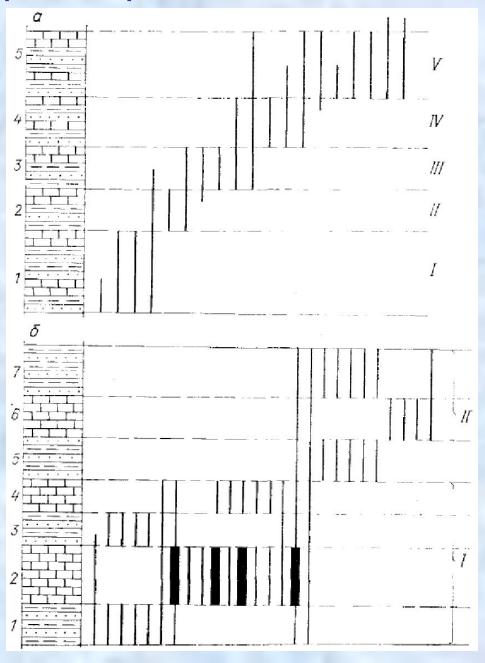
Использ уемые для коррепяции с общей шкалой

Применяющиеся в региональной стратиграфии

Метод руководящих ископаемых

- Органические остатки, существовавшие незначительный промежуток времени, но расселившиеся на значительной территории и в большом количестве.
- Интервал существования рода или вида руководящего организма зона.
- Руководящими формами являются космополиты (широко распространенные виды), эндемичная фауна и флора (обитавшая на ограниченной территории) может использоваться только для местной стратиграфии.

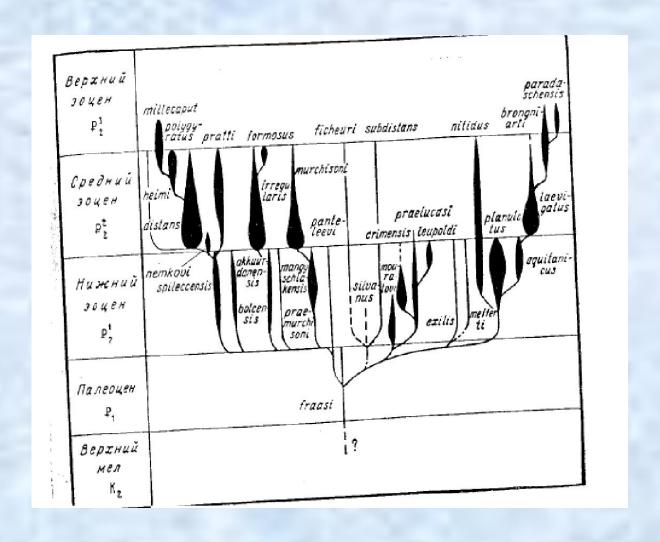
Руководящие фауны: археоциаты – раннего кембрия, граптолиты – ордовика и силура, конодонты – палеозоя,



• В настоящее время этот метод применяют только с учетом рекурренции фауны и флоры – при неоднократных перемещениях береговой линии (трансгрессиях и регрессиях) возможен возврат прежней фауны и флоры, тогда в разрезе повторяются сходные руководящие комплексы.

Метод комплексного анализа

- Изучение распределения всех окаменелостей в разрезах,
- установлении смены комплексов и прослеживании выделенных комплексов от разреза к разрезу.
- Устойчивость выделенных комплексов проверяется в нескольких разрезах. Называют комплекс по типичному виду (видиндекс). Этот метод позволяет установить естественные рубежи смены фауны и флоры. При его применении
- также необходимо анализировать фациальные особенности
- разреза.


Выделение разновозрастных палеонтологических комплексов

Филогенетический метод

- Выяснение смены родственных организмов во времени, основывается на принципах эволюционного развития. Потомки обычно устроены более прогрессивно, чем предки, и их остатки будут встречаться в более молодых отложениях. Чтобы применить этот метод, надо выяснить филогенез конкретной родственной группы, т. е. установить:
- 1) когда появились данные организмы;
- 2) сколько времени они существовали;
- 3) кто и какие были их предки;
- 4) кто стали потомками и как они в свою очередь развивались.

Схема филогенетических взаимоотношений видов нуммулитов, род Nummulites

Филогенетическое развитие аммоноидей от девона до мела (гониатиты D-P), цератиты (T), аммониты (J-K)

Количественный метод корреляции

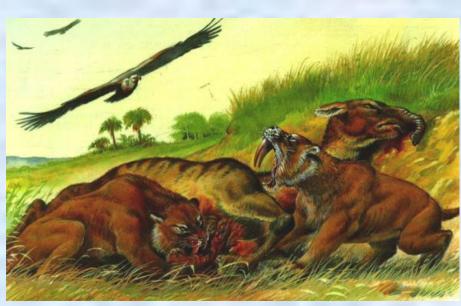
 Использование математического аппарата для анализа палеонтологических комплексов.
 Сравнение изучаемого слоя со слоями опорного разреза по содержанию общих окаменелостей.

Случаи, осложняющие применение биостратиграфических методов

- І. Отсутствие или недостаточность палеонтологических данных
- II. Необычный или аномальный состав комплексов ископаемых организмов
 - 1. первичные факторы;
 - 2. вторичные факторы

1. Факторы первичного характера, возникшие в процессии эволюции биоты в данном районе

- Конвергенция;
- Замедленные темпы эволюции;
- Параллелизм


Результат: эндемизм, рекурренция, суперститовые формы

Конвергенция: ихтиозавр и акула

Параллелизм млекопитающих: сумчатый и плацентарный саблезубые тигры

Рекурренция комплексов брахиопод и брюхоногих моллюсков в ильменских и бурегских слоях (средний фран, верхний девон) Ильменского глинта

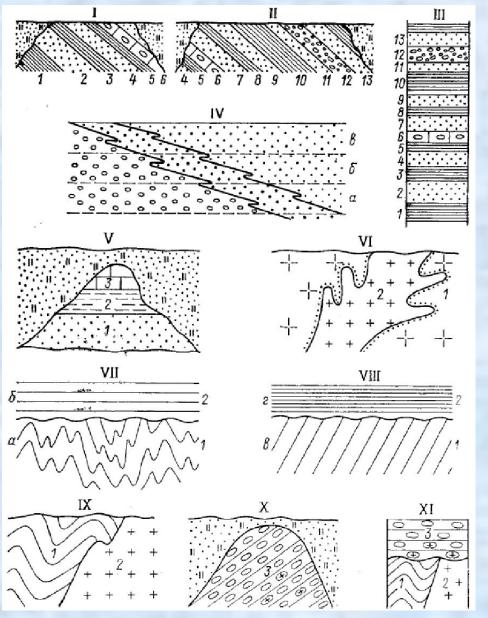
NG 1	Dhadaas	C1	Comme	Species	Beds		
№ Phylum		Class	Genus	Species	Ilm en	Buregi	
1		Inarticulata	Lingula Brug.	Lingula amalitzkii Wenj.	+	+	
2	2	maniculata –	Crania Retz.	Crania proavia Gold.	+	+	
3	Brachiopoda		Chonetipustula Paeck.	Chonetipustula petini Nal.	+	+	
4			Atrypa Dalm.	Atrypa uralica Nal.	+	+	
5		Articulata	Anatrypa Nal.	Anatrypa sigasa Nal.	+		
6			Contonicion Nat	Cyrtospirifer schelonicus Nal.	+		
7	B		Cyrtospirifer Nal.	Cyrtospirifer tenticulum (Vern.)	+	+	
8		, , , , , , , , , , , , , , , , , , ,	Cyrtina Dav.	Cyrtina demarlii (Bouch.)	+		
9			Anathyris Peetz	Anathyris helmerseni, (Buch)	+	+	
10			Cyrtolites Conr.	Cyrtolites euomphaloides Nal.		+	
11			Tropidodiscus Meek	Tropidodiscus tenuilineatus (Wen.)		+	
12			Bellerophon Mon.	Bellerophon petinensis Nal.	+	+	
13		Gastropoda	Platyschisma McCoy	Platyschisma uchtensis Keys.	+	+	
14		do	Flemingia Koninck	Flemingia koloschkensis Nal.		+	
15		astı		Naticopsis inflata (Roem.)	+?	+	
16		G	Naticopsis McCoy	Naticopsis aff. piligera(Sand.)	+		
17	a		Murchisonia Archiac et Verneuil	Murchisonia pusilla (Eichw.)	+		
18	Mollusca			Pteria (Volchovia) ilmenica B.Nal.		+	
	Mol			Pteria (Leptodesma) triangularis			
19				(Eichw.)		+	
20			Pteria Scopoli	Pteria (Leptodesma) semiovalis Wen.		+	
21			Trois Scopou	Pteria (Leptodesma) buregi B.Nal.		+	
22				Pteria (Leiopteria) cf. torreyi (Hall)		+	
23				Pteria (Actinopteria) buchii Eichwald		+	
24				Pteria (Pteronites) aff. honisseti		+	

2. Факторы вторичного характера, возникшие в результате переноса органических остатков

- 1. <u>Синхронные перенос</u> до или во время захоронения.
- 2. Асинхронный перенос переотложение окаменелостей из более древних отложений

Непалеонтологические методы

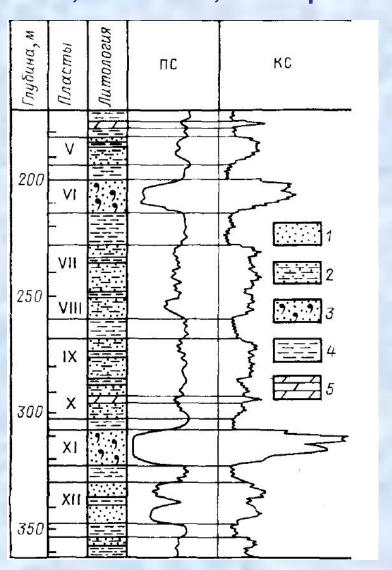
- 1. Литологические
- 2. Геофизические
- 3. Общегеологические
- 4. Ритмостратиграфический
- 5. Климатостратиграфический.


Литологические методы

- Расчленение отложений выделение интервалов разреза (слоев или групп слоев), отличающихся от подстилающих и перекрывающих интервалов по цвету, вещественному составу, текстуре, включениям и другим литологическим особенностям. Затем в разрезе устанавливают наиболее заметные, отличные от других слои и пачки.
- Такие слои и пачки, узнаваемые в соседних обнажениях (скважинах) и прослеживаемые иногда на значительные расстояния, получили название *маркирующих горизонтов*. При их помощи сопоставляют разрезы между собой и строят сводные разрезы.

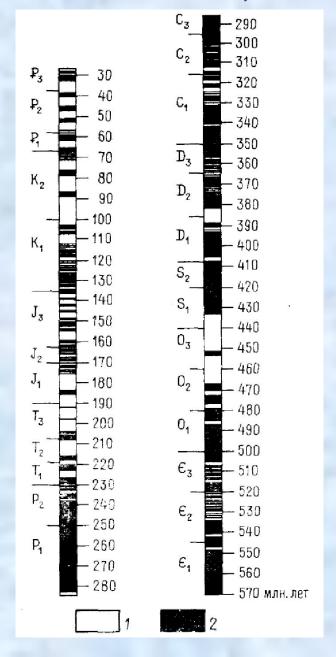
Копорская свита нижнего ордовика – «диктионемовые сланцы» - маркирующий горизонт

Примеры применения непалеонтологических методов при определении последовательности образования пород.



- Условные обозначения: I—III—маркирующий горизонт—слой 6;
- IV—изменение возраста слоя при перемещении береговой линии (а, б, в—разновозрастные уровни);
- V—верхний слой моложе нижнего;
- VI интрузия 2 моложе вмещающей интрузии 1;
 VII, VIII выделение структурных этажей 1, 2 (а гнейсы, б песчаники, в амфиболиты, г аргиллиты);
- IX—XI выяснение взаимоотношений с интрузией (IX—граниты моложе толщи сланцев 1; X— конгломераты 3 с галькой гранитов, обнажение на задернованном склоне; XI — общая последовательность пород в стратиграфической колонке)

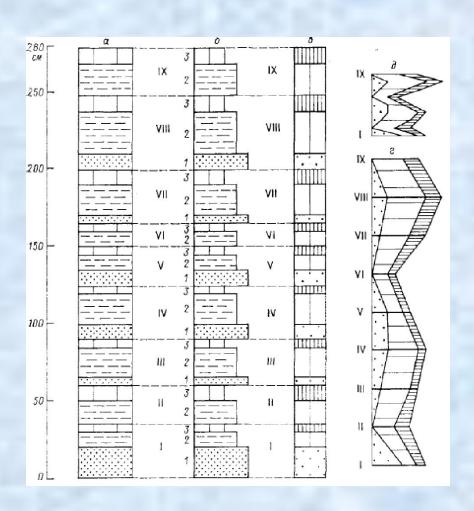
Геофизические методы


- Основаны на сравнении пород по их физическим свойствам. Они применяются для корреляции разрезов между собой и с *опорным разрезом*, возраст отложений которого определен другими методами.
- Широко используется анализ результатов каротажа (геофизических исследований скважин). Наиболее распространен электрический каротаж.

Результаты электрического каротажа одного из интервалов разреза по скважине. Условные обозначения: 1 – песчаники, 2 – глинистые песчаники, 3 – нефтеносные песчаники, 4 – глины, 5 – мергели

• Палеомагнитный метод основан на явлении палеомагнетизма. Магнитное поле, существовавшее в геологическом прошлом, зафиксировано в горных породах. При своем образовании горные породы намагничивались по направлению геомагнитного поля того времени и места, где они возникали. Вектор первичной намагниченности сохранился в горной породе и может быть определен. «Окаменевший геомагнетизм» позволяет сопоставлять отложения и выяснять их возраст.

Палеомагнитная шкала палеозоя, мезозоя и палеогена



• В геологической истории Земли не оставалось постоянным и расположение крупных блоков земной коры. В течение геологической истории геомагнитное поле претерпело множество инверсий (обращений полярности), в результате чего в разрезах осадочных и вулканических образований чередуются зоны прямой (совпадающей с современной) и обратной намагниченности. Геомагнитные инверсиисобытия глобального масштаба, поэтому возможна хронологическая корреляция прямо и обратно намагниченных пород по всему миру. Стратиграфические подразделения, выделенные этим методом - магнитозоны разного порядка (по кодексу).

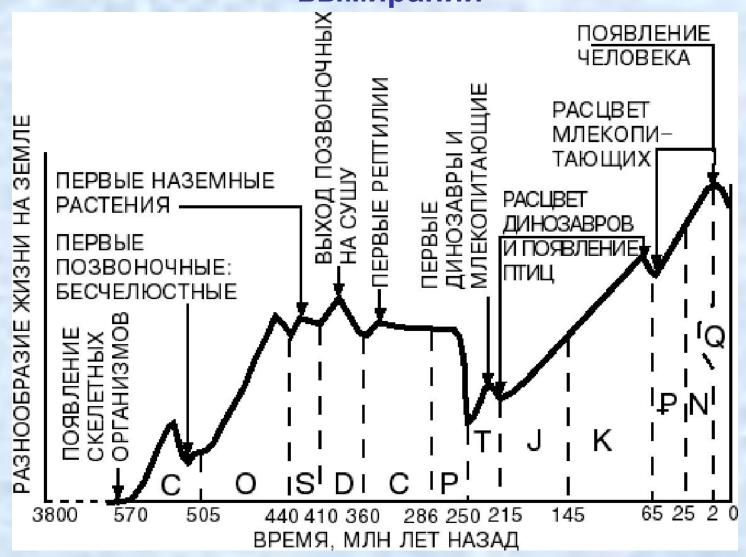
Ритмостратиграфия (циклостратиграфия)

• Изучение чередования различных пород в разрезах. Определяются наборы (ритмы) чередующихся пород и их границы. В ритмично построенных разрезах выделяют ритмы, по характерным особенностям которых сравнивают разрезы. Мощность элементарных ритмов различна; от нескольких миллиметров до нескольких метров. Ритмичность бывает разных порядков.

Построение ритмограммы

а —разрез; *б*—разрез разделен на ритмы (I—IX), в-элементы ритмов заменены условными знаками (произвольно); г-ритмограмма колонки ритмов заменены отрезками горизонтальных линий (расположены друг от друга на равных расстояниях), границы элементов ритмов соединены прямыми линиями; д — ритмограмма того же разреза в более компактном и удобном виде: уменьшен вертикальный масштаб и убраны отрезки линий, обозначающих колонки ритмов (вертикальный масштаб ритмограмм выбирается произвольно, мощности элементов ритмов откладываются по горизонтали)

Ритмичное чередование светлых прослоев алевролитов и темных глинистых прослоев в позднедевонских песчаниках южного берега оз. Ильмень (верхний девон, франский ярус, ильменские слои)


Секвентная стратиграфия

- Секвенция стратиграфическая единица, сложенная согласной последовательностью генетически взаимосвязанных слоев и, ограниченная в кровле и подошве несогласиями, либо соответствующими им согласными поверхностями.
- Секвенция состоит из трансгрессивной, регрессивной и др. частей, которых называют «трактами». В латеральном направлении в составе секвенции могут быть выделены
- сейсмофации: например, шельфовая, континентального подножия и т.п.

Экостратиграфический метод

- Экологическая стратиграфия, или экостратиграфия, т. е. стратиграфия, основанная на принципах взаимодействия органического мира и среды.
- К экостратиграфии примыкает событийная стратиграфия, которая выделяет и прослеживает следующие событийные отложения:
- 1) турбидиты, т. е. отложения мутьевых потоков, ко-
- торые могут быть связаны с землетрясениями;
- 2) темпеститы, т. е. отложения штормов;
- 3) инундиты отложения наводнений;
- 4) тиллиты и морены отложения ледников;
- 5) импактиты отложения ударных кратеров метео-
- ритов.

График изменения числа видов организмов в истории Земли. Отчетливо видны моменты массовых вымираний

• Кроме этого она восстанавливает эрозионные и седиментационные события. Среди морских отложений эрозионные события хорошо фиксируются появлением образований твердого дна (хардграундов). Кроме того, в морских и континентальных отложениях могут встречаться пепловые прослои - следы вулканических извержений.

• Одним из примеров современных геологических событий можно считать катастрофическое землетрясение 26 декабря 2004 года в Индонезии и землетрясение 11 марта 2011 года в Японии, вызвавшие гигантские цунами.

- Крупные метеориты при столкновении с Землей оставляют не только ударные кратеры.
- Взрывная волна разбрасывает от места падения космического тела его обломки и частицы пород разрушенной земной
- поверхности, в которую ударил астероид, что приводит к формированию горизонтов со специфическими горными породами, прослеживающихся на большом расстоянии.

Иридиевая аномалия – горизонт (показан стрелкой) на границе меловых и палеогеновых отложений в штате Колорадо (США) считается результатом падения метеорита на полуострове Юкатан

Кратер Чиксулуб расположен на п-ове Юкатан и является следом грандиозного метеоритного воздействия, в конце мезозойской эры. Структура имеет диаметр 180 км и около 900 м глубины. Внешний край кратера подчеркнут небольшой депрессией глубиной 3–5 м при ширине 5 км.

Климатостратиграфический метод

- Основан на чередовании в четвертичном периоде интервалов резкого похолодания и потепления, что определило смену литолого-фациальных и палеонтологических комплексов. В настоящее время метод используется и в дочетвертичной стратиграфии.
- Например, с его помощью проведена нижняя граница венда по подошве лапландских тиллитов, свидетельствующих об оледенении.