Heat fluxes in the atmosphere
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Heat flux notion

The quantity ¢ leing transferred by the air parcels in a
unit of time tﬁrough a unit of area facing the transfer
direction is called HEAT FLUX.

There are convective heat flux and eddy heat flux.

Convective heat flux, in turn, is divided into advective
one (horizontal heat transfer) and real convective
(vertical heat transfer).

In meteorology, the horizontal heat flux is called
advective flux (Q:), and the vertical one is called
convective flux (Q.).



Convective and advective heat fluxes

Any air particle contains some amount of heat. When moving, it
carries this heat along. By this way the heat is distributed in the
atmosphere. However, that is not the only way for the heat
distribution. Not less effective way is EDDY MIXING
(EXCHANGE)

Incoming heat flux is positive, outgoing flux is negative.



Eddy heat flux

Eddy heat flux is caused by wind velocity pulsation

General conditions for eddy
exchange

. Permanency

i Conservation

Quantity C does not satisfy this conditions.
Air temperaﬁlre changes as the air ascending
or descending. However, potential temperature

* Passivity satisfy.
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Along with vertical eddy flux there are horizontal fluxes.
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Eddy heat exchange differs from that of other substances.
Coefficients A and K (for eddy heat exchange) are called coefficient
of eddy heat conductivity and temperature conductivity respectively.

As the stratification is stable ( 7, Pefddy heat flux directed
downward O, <0<

As the stratific?tion is unstable (Y, ¥éddy heat flux directed upward
0, >0

Heat influx (outflow) notion

Heat influx = incoming heat flux — outgoing heat flux HI =0, —Q_
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Individual and local (partial) derivatives

When an air parcel moves, its state parameters are not necessarily
constant; they are function of coordinates and time.

F=F(x,y,z,t)

For the moving parcel, the coordinates, in turn, are functions of time.
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Energy equation

Temperature variation is of prime interest for meteorologists. It
depends on heat influx. It can be determined on the base of the
energy conservation equation.
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The same reasoning can be applied for horizontal heat fluxes
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Since the horizontal exchange is much smaller the vertical one,
for practical purposes this formula can be simplified
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After substituting into the basic equation

and solution with respect to %—T , we obtain
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or oT
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1. Non-periodical T variations

* Above boundary layer (in the free atm.)
« Small time intervals (about 24 h)

* [0 no heat influx [J adiab. process
Energy equation:
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2. Periodical T variations

» Within the boundary layer (diurnal T variations)
* long time intervals
 [] only vertical eddy heat influx

Energy equation ( or equation of the conductivity of
the atm.):
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3. Air mass moving over
non-homogeneous surface

» Advection and eddy exchange are important
» Taking steady state process

* The process is called oT
air mass transformation — =
Energy equation Ot
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4. Annual T variation

* Most important role to
* Local, advective and convective

derivatives [1 0 over a long period of time

Energy equation
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