The air humidity Lecture 20

Memory flash ;)

Please, give definitions to the following terms:

- Absolute humidity
- Specific humidity
- Surface layer
- Boundary layer

How much is the amount of water taking part in this rotation?

http://www.meted.ucar.edu/mesoprim/mesodefn/index.htm

$\bullet \bullet \bullet$

Annual means of water amount				
involved in the atmospheric circulation				
	precipitation	evaporation	Run-off	
	mm/year	mm/year	mm/year	
Lands	689	423	266	
Oceans	1313	1423	110	
The Globe	1131	1131	0	

1 kg of water per 1 m² \square 1 mm of precipitated water

1 m²

Annual amount of precipitation

Spb 680 mm, Wien 300 mm, Amsterdam 1200 mm

Tropics 680 mm/ day !

- all
- 1.29 *10 ¹³ t of water in the atmosphere (3 phases at together)
- Equivalent to 25.5 mm
- Annual amount of precipitation is 1131 mm

How often is the water replaced in the atmosphere?

1131 / 25.5=45 times or every 8 days

 To evaporate 1131 mm of water we need
2.82* 10 ⁵ J or 30% of solar radiation absorbed by the planet

Equation of water transfer in the turbulent atmosphere

(20.1)

$$Q_w = -k_w \rho \partial S / \partial z$$

$$k_w$$
 – eddy diffusion coefficient, m^2 / s
s – specific humidity
 Q_w – turbulent flux of water vapour

Only specific humidity could be considered as a conservative characteristic of w.v.content of a moving particle (no absolute or relative humidity, dew point, w.v.pressure

Equation of water transfer in the turbulent atmosphere

Q - (Q + dQ) = -dQ

Amount of the w.v.mass remained in the

air volume per a unit of time

 $-Q = -\partial Q / \partial z \, dz =$ $= \partial / \partial z (k\rho \,\partial s / \partial z) \, dz$

(20.2)

 $1 m^2$

within the air volume

$$-dQ = \rho \frac{ds}{dt} = \frac{\partial}{\partial z} (k\rho \,\partial s \,/\,\partial z) +$$

 $(k' \rho \partial s / \partial x) + \frac{\partial}{\partial v} (k' \rho \partial s / \partial y)$

Advective terms could be neglected (too small)

(20.4)

 $\rho(\partial s / \partial t + U \partial s / \partial x + V \partial s / \partial y + W \partial s / \partial z) =$ = $\partial / \partial z (k\rho \partial s / \partial z) + \partial / \partial x (k' \rho \partial s / \partial x) + \partial / \partial y (k' \rho \partial s / \partial y)$

 $\rho(\partial s / \partial t + U \partial s / \partial x + V \partial s / \partial y + W \partial s / \partial z) =$ Eddy diffusion of w.v. $= \partial / \partial z (k \rho \partial s / \partial z) + \partial / \partial x (k' \rho \partial s / \partial x) +$ $+\partial/\partial y (k' \rho \partial s / \partial y)$ in/outflux of w.v. $\frac{\partial s}{\partial t} = \frac{1}{\rho} \left| \frac{\partial c}{\partial z} (k\rho \,\partial s \,/\,\partial z) - (U \,\partial s \,/\,\partial x + V \,\partial s \,/\,\partial y) + W \,\partial s \,/\,\partial z \right|$ (20.5)due to evap./co ndensati on

Eddy diffusion of w.v.

Horizontal transfer or advection

Convective w.v. transfer

The equation is true for non-saturated air

Only vertical eddy diffusion is represented here but it could be both vertical and horizontal

Distribution of the humidity characteristics with height in the *surface layer*

Let's find S=S(z) in the surface layer \Box integrate (20.5) from 0 to Z

Is the w.v.flux at z=0, i.e. the rate of evaporation from the Earth's surface:

$$-\left(\rho k \frac{\partial s}{\partial z}\right)_0 = Q'_0$$

can be regarded as approximately unchangeable with height (as well as a heat flux). $\rho k \frac{\partial z}{\partial z} + Q'_0 = 0$ or $Q'_0 = -\rho k \frac{\partial z}{\partial z}$ (20.8) Similarly to the heat flux :

(20.8) shows that the w.v. eddy flux in the surface layer can be regarded as approximately unchangeable with height (as well as a heat flux).

Similarly to the heat flux :

$$S(z) = S_2 - \frac{Q'_0}{a\rho_0} \ln \frac{z + z_0}{z_2 + z_0}$$
(20.9)

"S" decreases at $Q'_0 < 0$ with height proportionally to $\ln z$

Humidity distribution above the surface layer

$$\frac{e}{e_0} = \frac{p}{p_0} = \exp(-\frac{g}{R}\frac{z}{T_m})$$

(20.10)

Comparision of calculated and observed w.v. pressure values shows that the observed values decrease with height much more rapidly than calculated ones.

$$S = S_0 * 10^{-\frac{z}{g} - \frac{z^2}{120}}$$
 (20.11) Suring's formula

Z in km

(empirical)

True within the boundary layer above the surface layer

Diurnal variation of the humidity characteristics

Near 7 a.m. 3-5 p.m. 7-10 p.m. sunrise

Diurnal variation is better pronounced over land in the warm season

Diurnal variation of the humidity characteristics

RH=100% *e/E

In winter/over water surfaces: One min, usually before sunrise. Weak max, supposed before noon.

Reasons:

- 1. Eddy exchange is weak
- 2. Eddy transfer of the w.v. is compensated by evaporation

e decreases near noon (summer)

E sharply increases (account for T rise)