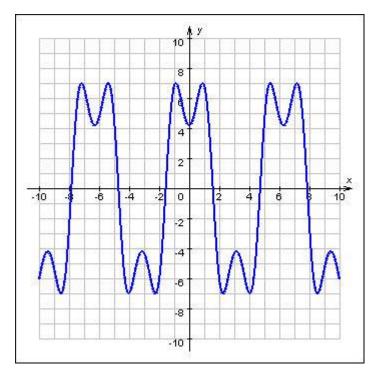
Заглянем в мир волн

Периодические функции: f(t)=f(t+T), T - период



$$y = 7 \sin \left(\frac{5}{2} \cos x\right).$$

Полезные, хотя и неточные вещи:

- 1. Сумма двух функций с соизмеримыми периодами это периодическая функция. Ее период НОК двух исходных
- 2. Если периоды несоизмеримы, то сумма не периодична (имеет сложный спектр)
- 3. Произведение непрерывной функции на периодическую периодично

Солнечные сутки – 29 земных, лунный месяц – 28 дневных суток. Должен существовать период 28*29=812 суток=2,2 года

Частным случаем таких функций являются гармонические функции

$$f(t) = A sin(\omega t + \varphi)$$
 или $f(t) = A cos(\omega t + \varphi)$

где A – амплитуда гармоники, $\omega t + \phi$ - ее фаза. Фаза гармоники не меняется, если к ней алгебраически прибавить 2π – период гармоник.

Важнейшими для использования в задачах динамической метеорологии свойствами гармоник являются:

Теоремы сложения аргументов, например, теорема косинусов

$$cos(\omega t - \varphi) = cos(\omega t)cos(\varphi) + sin(\omega t)sin(\varphi)$$

Формулы преобразования суммы в произведение и произведения в суммы, например,

$$cos(\omega_1 t) + cos(\omega_2 t) = 2cos(\frac{\omega_1 - \omega_2}{2}t)cos(\frac{\omega_1 + \omega_2}{2}t)$$
$$cos(\omega_1 t) \cdot cos(\omega_2 t) = \frac{1}{2}cos(\omega_1 t - \omega_2 t) + cos(\omega_1 t + \omega_2 t)$$

Амплитудно-фазовое представление гармоник

Не забывать, что

$$A\cos x + B\sin x = \sqrt{A^2 + B^2} \cdot \left(\frac{A}{\sqrt{A^2 + B^2}}\cos x + \frac{B}{\sqrt{A^2 + B^2}}\sin x\right) = \sqrt{A^2 + B^2} \cdot \left(\cos x \cos \phi + \sin x \sin \phi\right) = \sqrt{A^2 + B^2}\cos(x - \phi)$$
Здесь $\sqrt{A^2 + B^2}$ - амплитуда колебания,

а смещение по фазе φ находить по формуле $\left| \operatorname{tg} \varphi = \frac{B}{A} \right|$

Комплексное представление гармоник

Формуда Эйлера

$$\exp(ix) = e^{ix} = \cos x + i \cdot \sin x$$

Комплексное представление гармоник (D = A + iB)

$$De^{-ix} = (A+iB) \cdot (\cos x - i \cdot \sin x) = (A\cos x + B\sin x) + i(B\cos x - A\sin x)$$
 откуда следует, что

$$A \cos x + \cos \sin x = \sin \left(D \sin^{-ix}\right)$$

$$B x - A x = (De^{-ix})$$

Еще одно комплексное представление ($D^* = A - iB$)

$$De^{-ix} = (A\cos x + B\sin x) + i(B\cos x - A\sin x)$$

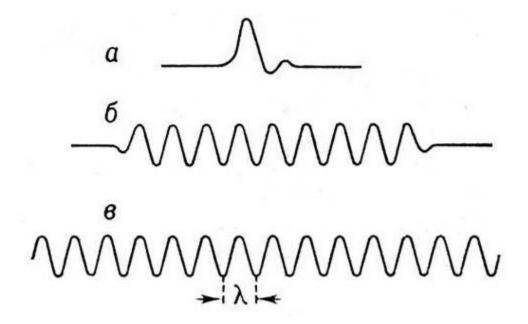
 $D^*e^{+ix} = (A\cos x + B\sin x) - i(B\cos x - A\sin x)$

$$A\cos x + B\sin x = De^{-ix} + D^*e^{ix}$$

Зачем нужно?

- Комплексное представление удобно, если нужно преобразовывать функцию
- Дело в том, что экспонента переходит сама в себя при дифференцировании или интегрировании
- Это важно для теоретического анализа

Волны в природе и теории

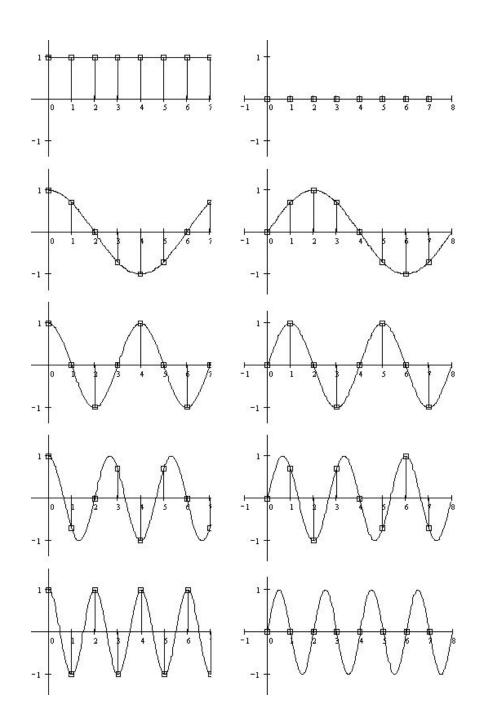


а — одиночная волна; б — цуг волн; в — бесконечная синусоидальная волна.

Только бесконечная периодическая функция разлагается в ряд Фурье. Пакеты и импульсы конечной длины представимы только интегралом Фурье.

Гармоники

- Базисные функции дискретного преобразования Фурье для сигнала длины N = 8.
- Имеем N/2 + 1 = 5 различных базисных частот.
- Имеем N+2 базисные функции, 2 из которых тождественно равны нулю.
- Количество информации не изменяется: N чисел



Гармонический анализ = разложение в ряд Фурье

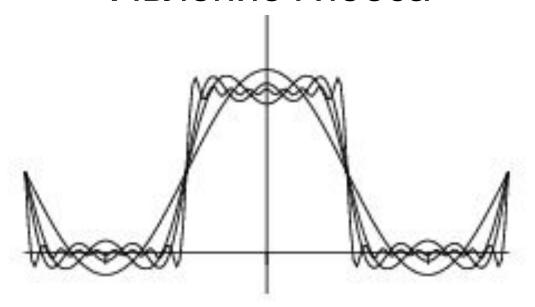
Все метеорологические поля периодичны по долготе и по широте вследствие близкой к сфере формы земной поверхности. Если функция имеет период *L*, то ее можно представить в виде бесконечного ряда Фурье по синусам и косинусам в виде

$$f(\mathbf{p}) \mathbf{q} = \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi nx}{L} + b_n \sin \frac{2\pi nx}{L} \right),$$

$$a_n = \frac{2}{L} \int_{-L/2}^{L/2} f(\mathbf{x}) \cdot \cos \frac{2\pi nx}{L} dx, () \ a_0, = \frac{1}{L} \int_{-L/2}^{L/2} f(\mathbf{x}) \cdot dx$$

$$\mathbf{u} \ b_n = \frac{2}{L} \int_{-L/2}^{L/2} f(\mathbf{x}) \cdot \sin \frac{2\pi nx}{L} dx$$

Ряд Фурье для прямоугольного импульса. Явление Гиббса



$$S_n(x) = \frac{1}{2} + \frac{2}{\pi} (\cos \omega x - \frac{1}{3} \cos 3\omega x + \frac{1}{5} \cos 5\omega x + \dots)$$

$$= \frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{n} (-1)^k \frac{\cos(2k-1)\omega x}{2k-1}$$

Используя экспоненциальное представление гармоник, ряд Фурье можно записать в виде:

$$f(x) = \sum_{n = -\infty}^{n = \infty} \alpha_n \cdot \exp\left(i \cdot \frac{2\pi nx}{L}\right):$$

$$\alpha_n = \frac{a_n - b_n}{2} = \frac{1}{L} \int_{-L/2}^{L/2} f(x) \cdot \exp\left(-i \cdot \frac{2\pi nx}{L}\right) dx$$

Если функция не периодична, то она представима интегралом Фурье

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k) \exp[ikx] dk \qquad F(k) = \int_{-\infty}^{\infty} f(x) \exp[-ikx] dx$$

Замена функции на ее интеграл Фурье называется преобразованием Фурье.

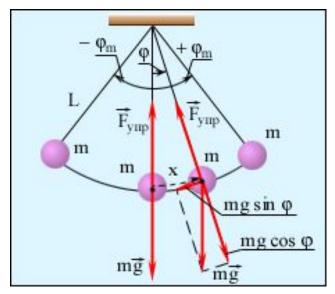
Оно представляет функцию не в физическом пространстве, а в «пространстве волновых чисел» или «пространстве частот колебаний»

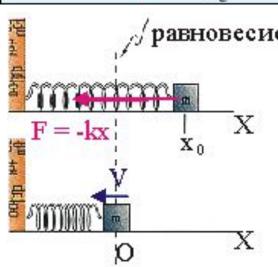
Колебания – это периодические изменения параметра (параметров) во времени.

Виды колебаний:

- собственные
 - свободные
 - затухающие
- вынужденные
 - вызываемые периодическим воздействием
 - автоколебания, вызываемые непериодическим воздействием

Свободные колебания математического маятника=баланс инерции и отклоняющей





СИЛЫ

$$m\frac{d^2x}{dt^2} = -kx \quad \text{odàai ai èa êi ëaaai èe}$$
$$-kx \quad -1 \text{ oêei i ÿb ù ay ñèea}$$

$$m\frac{d^2x}{dt^2}$$
 – âî çâðàù àb ù àÿ ñèëà èí åðöèè

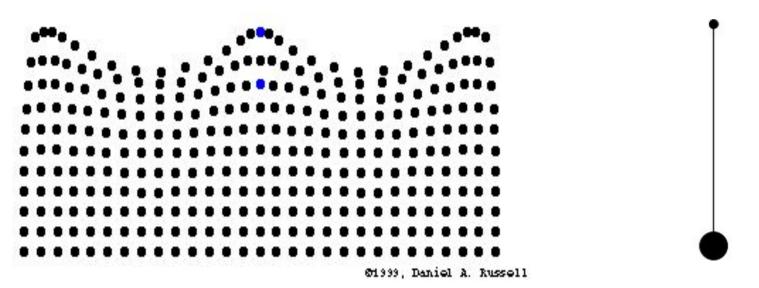
$$m\frac{d^2x}{dt^2} + kx = 0 \quad \dot{e}\dot{e}\dot{e} \quad \frac{d^2x}{dt^2} + \omega^2x = 0, \quad \omega^2 = \frac{k}{m}$$

$$\div$$
à nồi î å ð å φ å i è å: $x(t) = e^{\lambda t}$

οὰδὰθὸἀδὲ πὸὲ ÷å nê î å όδὰ â í å i è å:
$$\lambda^2 + \omega^2 = 0$$

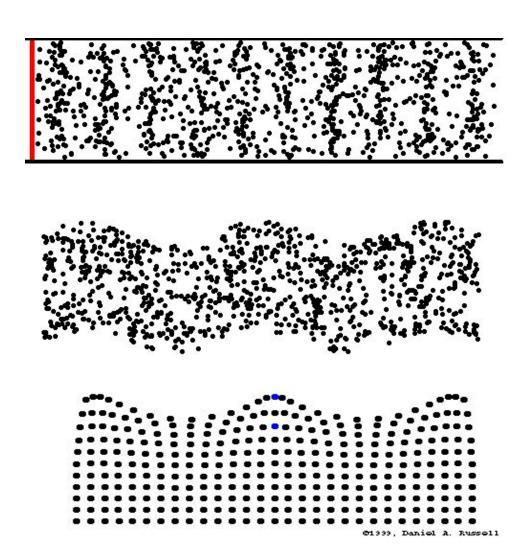
î áù åå ðåø åí èå:
$$x(t) = \tilde{N}_1 e^{\lambda_1 t} + \tilde{N}_1 e^{\lambda_1 t} = A\cos(\omega t + \varphi)$$

Чем волны отличаются от колебаний? – Связями между частицами!



У волн отклоняющей силой является воздействие среды, т.е. соседей, Поэтому они распространяются по среде.

Виды волн – по направление движения частиц: продольные поперечные, вертикальные



$$\frac{d^2x}{dt^2} + \omega^2 x = 0$$

Сравнение математического Описания колебания и волны

частное решение: $x(t) = e^{\lambda t}$

характеристическое уравнение: $\lambda^2 + \omega^2 = 0$

общее решение: $\mathcal{L}(t) = 1 \mathcal{C}^{t} + 1 \mathcal{A}^{t} = t \cos(\omega + \varphi)$

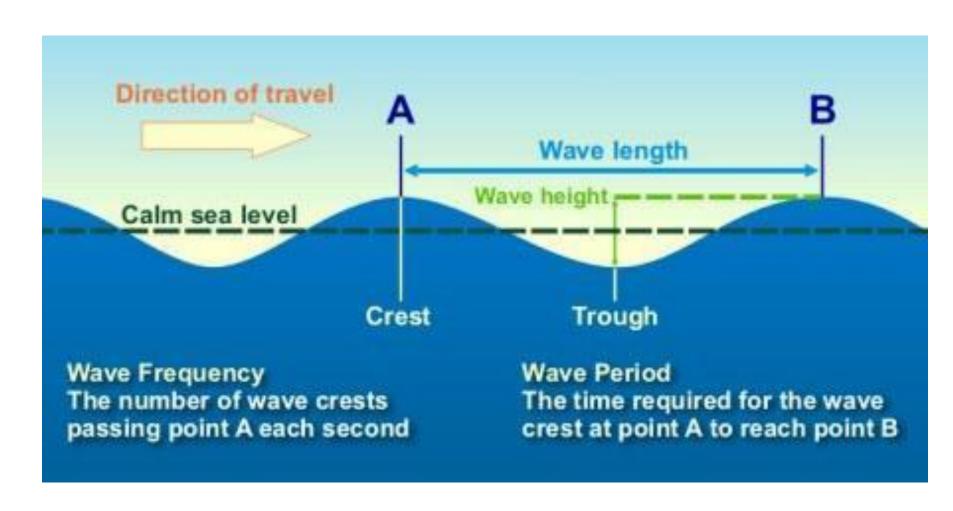
$$\frac{\partial^2 z}{\partial t^2} + c^2 \frac{\partial z}{\partial x^2} = 0$$

частное решение: $z(t,x) = e^{i(kx-\omega t)} = e^{ik(x-ct)}$

дисперсионное соотношение: $\omega^2 - k^2 c^2 = 0 \Rightarrow \left| c = \pm \frac{\omega}{k} \right|$

$$z = f(x - ct) + f(x + ct)$$

Параметры волны: амплитуда, частота (период), волновое число(длина волны)



Фазовая скорость одномерной волны

F(интусоидальная волна+ δ) -

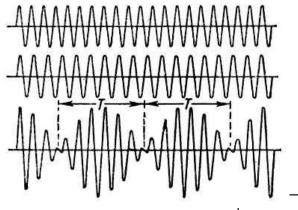
$$\phi = k \cdot x - \omega \cdot t + \delta$$
 фаза этой волны

$$\frac{d\phi}{dt} = 0 \Rightarrow \frac{d}{dt}(kx - \omega t + \delta) = k\frac{dx}{dt} - \omega = 0$$

$$c = \frac{dx}{dt}$$
 скорость перемещения фазы

$$c = \frac{\omega}{k} = \left(\frac{2\pi}{T}\right) / \left(\frac{2\pi}{L}\right) = \frac{L}{T}$$

Дисперсия и групповая скорость волн (одномерный случай)

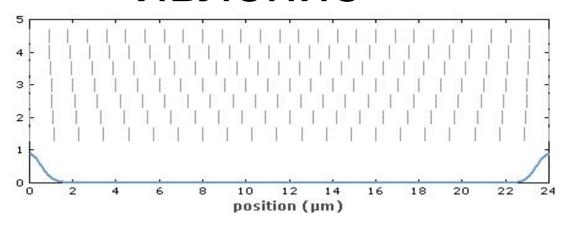


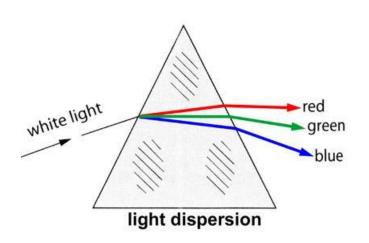
При сложении колебаний с близкими частотами возникают <u>биения.</u>

$$\xi_{1}(x,t) = a \cdot Cos(\omega t - kx) + \frac{c}{c} \frac{\xi_{2}(x,t) = a \cdot Cos[(\omega + \Delta \omega)t - (k + \Delta k)x]}{\xi_{2}(x,t) = 2a \cdot Cos(\frac{\Delta \omega}{2}t - \frac{\Delta k}{2}x) \cdot Cos(\omega t - kx).}$$

Фазовая скорость распространения <u>огибающей</u> волнового пакета называется групповой скоростью

Дисперсия, как физическое явление





Если в среде нет дисперсии, то волновой пакет перемещается, сохраняя форму. Если дисперсия есть – он распадается.

Дисперсия – следствие зависимости фазовой скорости от длины волны (волнового числа)

Общий вид волны

$$f(t, x, y, z) = \operatorname{Re} \left\{ Ae^{i(k_X x + k_y y + k_z z - \omega t - \phi_0)} \right\}$$

$$\phi = k_X x + k_y y + k_z z - \omega t - \phi_0 - \hat{o} \, \hat{a} c \hat{a}!$$

$$\frac{d\phi}{dt} = k_X \frac{dx}{||dt|} + k_y \frac{dy}{||dt|} + k_z \frac{dz}{||dt|} - \omega = 0$$

$$c_X c_y c_z$$

$$c_Z$$

$$\left\{ c_X = \frac{\omega}{k_X} \right\}$$

$$c_Z = \frac{\omega}{k_Z}$$

$$c_Z = \frac{\omega}{k_Z}$$

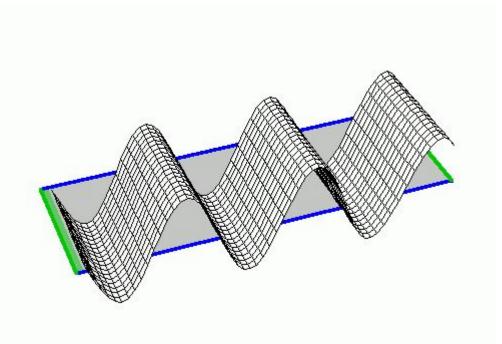
$$c_Z = \frac{\omega}{k_Z}$$

Линейные волны

$$z = Ae^{i\{\omega t - (k_1 x + k_2 y)\}}$$

$$k^2 = \omega^2 / c^2 = k_1^2 + k_2^2$$

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{1}{c^2} \frac{\partial^2 z}{\partial t^2}$$



Волновой вектор $\mathbf{k} = \mathbf{k}_1 \mathbf{i} + \mathbf{k}_2 \mathbf{j}$

Круговые и сферические волны

$$z(t,r) = \frac{A}{r} \exp[ik(r-ct)],$$

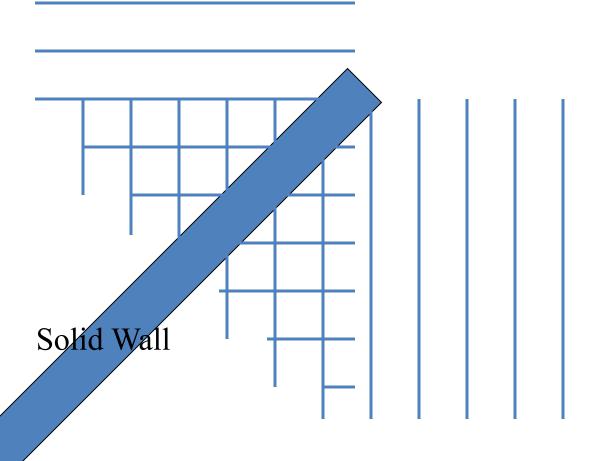
$$r = \sqrt{x^2 + y^2}$$
 для круговых волн
$$= \sqrt{x^2 + y^2 + z^2}$$
 для сферических волн
$$\frac{\partial^2 z}{\partial t^2} + \frac{c^2}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial z}{\partial r} = 0$$

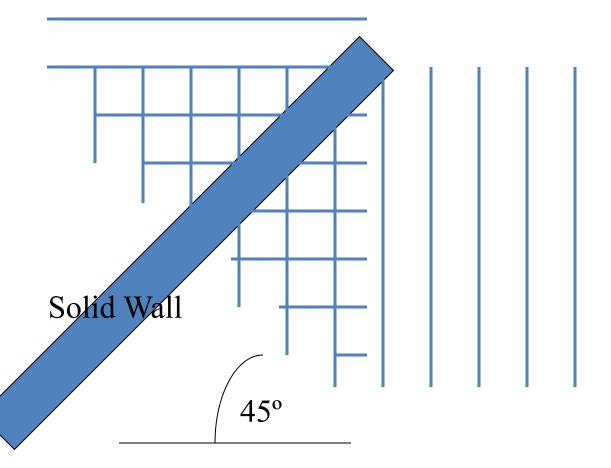
Линейные волновые явления

(отражение, преломление, диффракция, интерференция, резонанс, эффект Допплера)

REFLECTION BEFLECTION

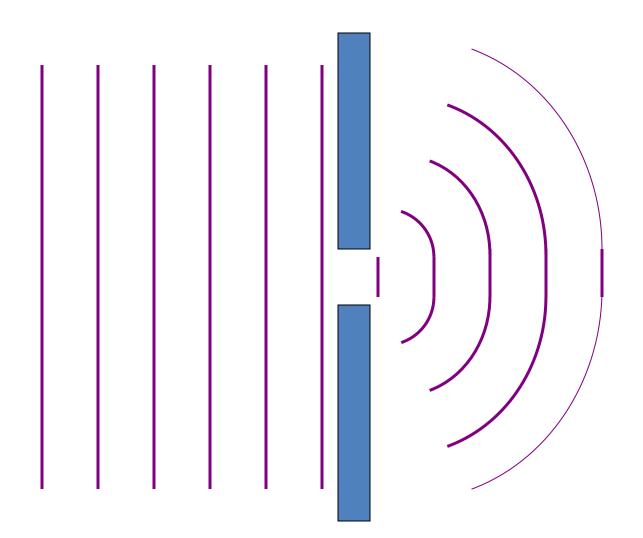
- WHEN WAVES HIT A SOLID SURFACE THEY REFLECT
- THE ANGLE OF REFLECTION IS THE SAME AS THE ANGLE OF INCIDENCE
- r = i

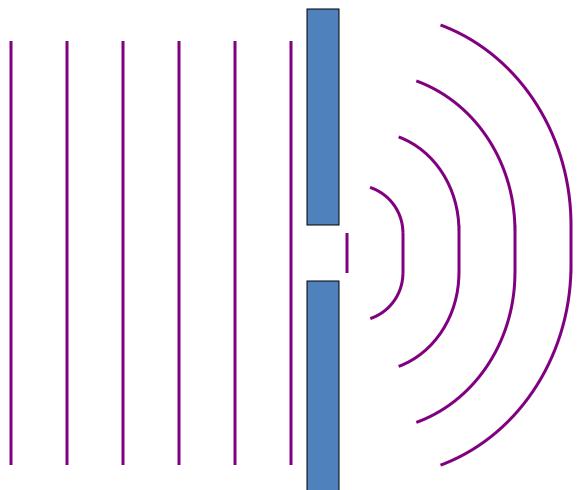




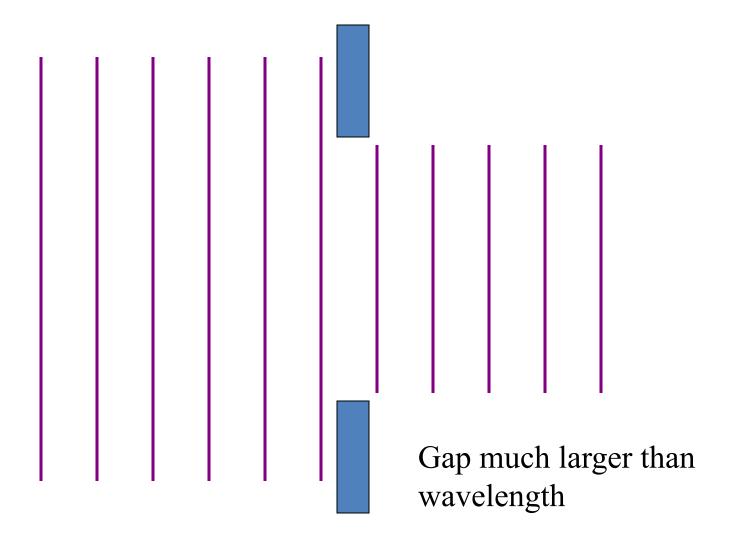
Diffraction

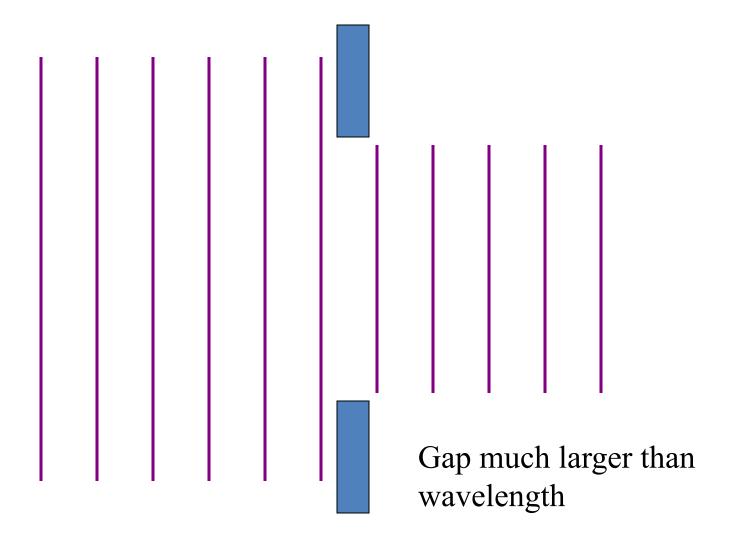
- When waves pass through a gap they can bend round the edges of the gap
- The effect is most noticeable when the gap size is similar to the wavelength

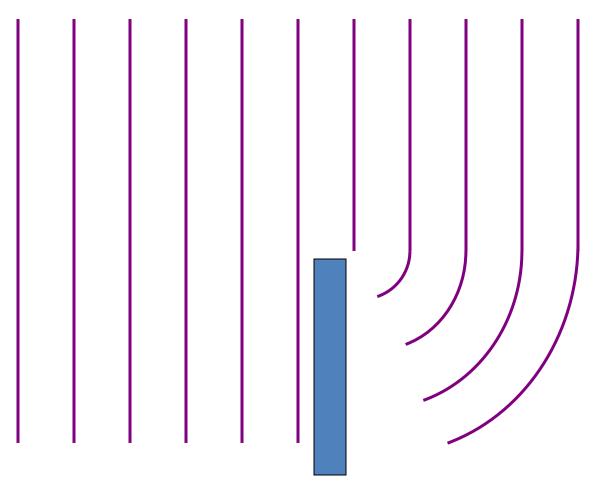




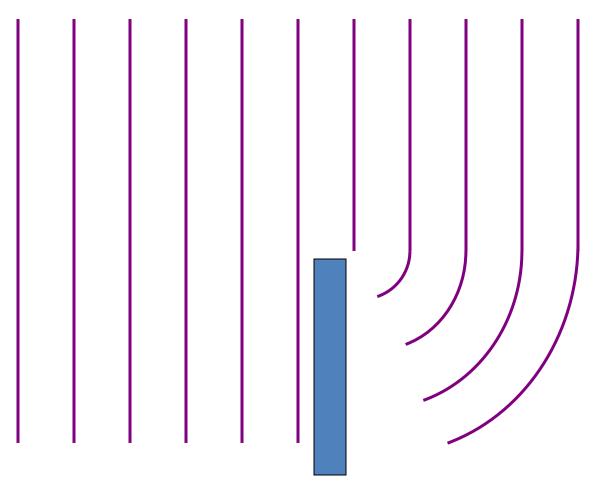
Gap same size as wavelength







Obstacle same size as wavelength



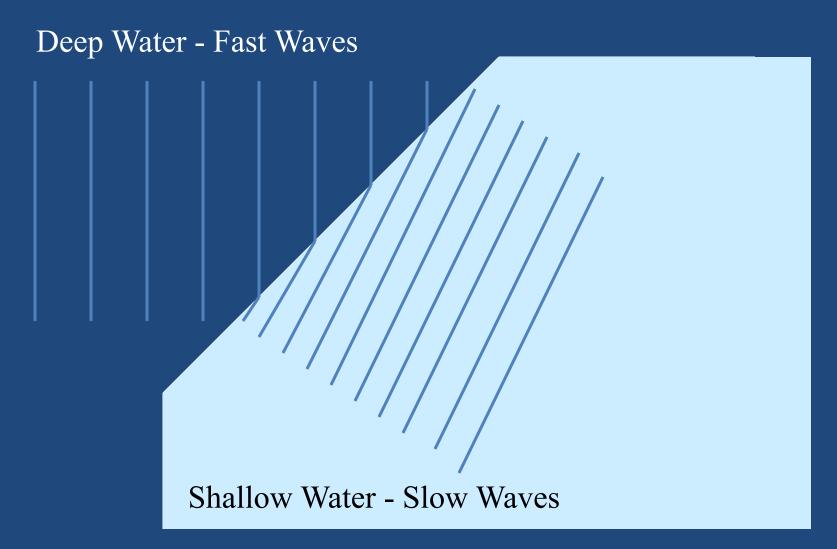
Obstacle same size as wavelength

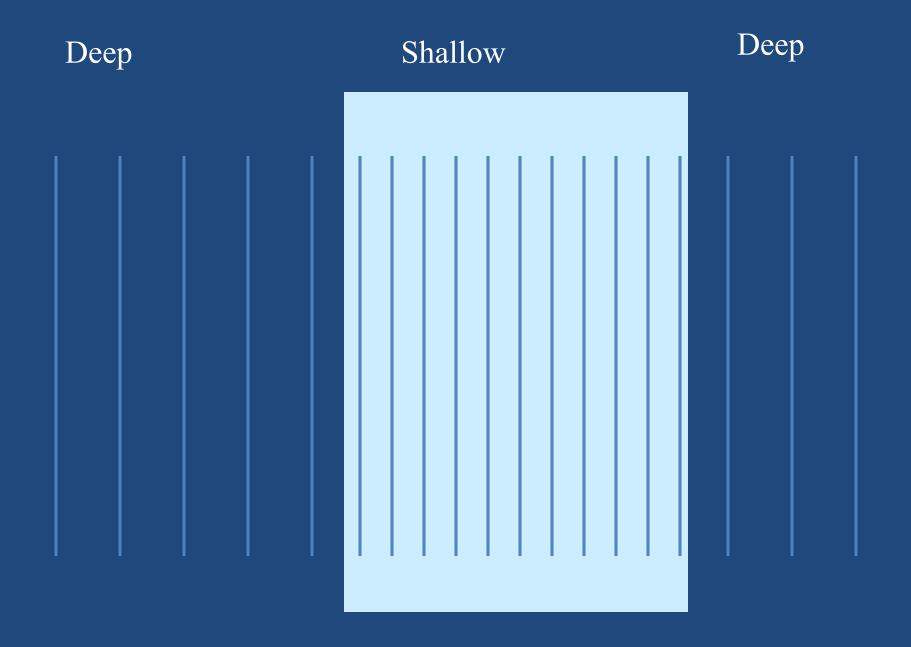
Refraction

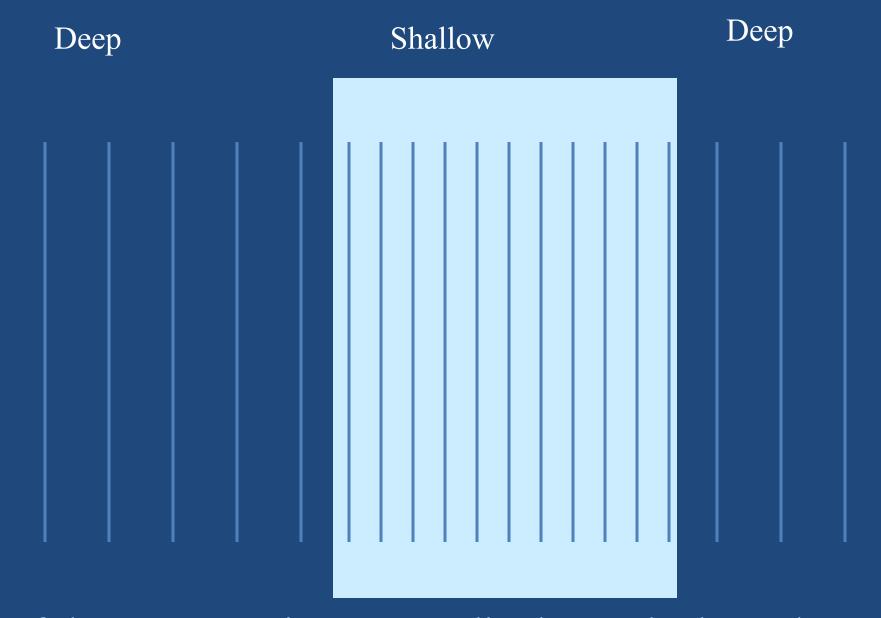
- When wavefronts slow down they may change direction.
- Water waves slow down in shallow water

Deep Water - Fast Waves Shallow Water - Slow Waves

- •Waves are bent towards the normal
- •Wavelength decreases
- •Frequency stays the same

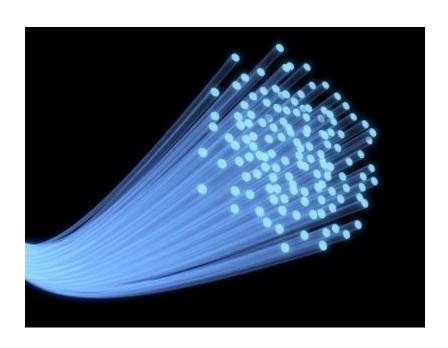






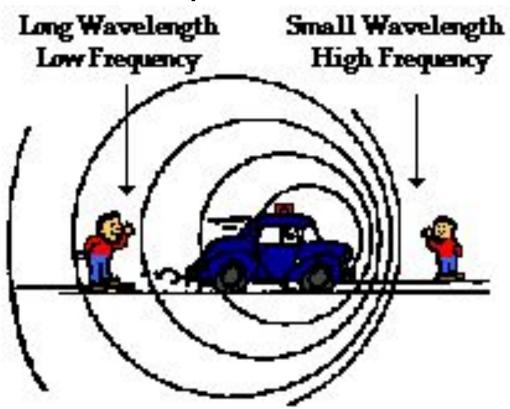
If the waves arrive perpendicular to the boundary they do not bend

Захваченные волны. Волновод



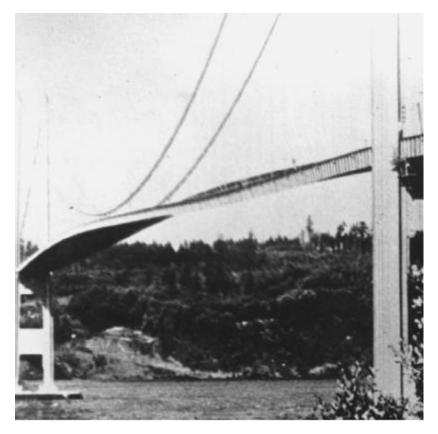
Эффект Допплера

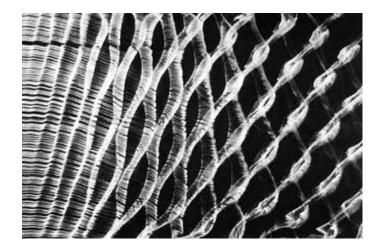
- Кажущееся изменение частоты вследствие движения источника относительно наблюдателя
- Когда источник приближается кажущаяся частота возрастает и волна как бы сжимается, кажется короче
- Когда источник удаляется кажущаяся частота уменшается и волна как бы растягивается, кажется длиннее



• Звук сигнала электрички, когда она проходит мимо изменяется

The Doppler Effect for a moving sound source





Резонанс

7 ноября 1940 г. Новый и широко разрекламированный подвесной мост на р. Такома (США)

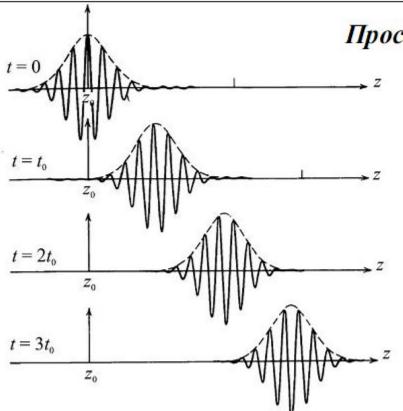
Развалился под действием ветра в результате возникновения резонанса

Нелинейные волновые явления

Самофокусировка. Солитоны

Нелинейность волн – зависимость скорости распространения волны от ее амплитуды

С математической точки зрения поведение лазерных импульсов, подаваемых в волокно, описывается задачей о распространении пакета (цуга) волн, характеризующегося узким спектром частот и групповой скоростью $v_{\rm rp} = \frac{d\omega}{dk}.$



Простейшая (линейная) модель:

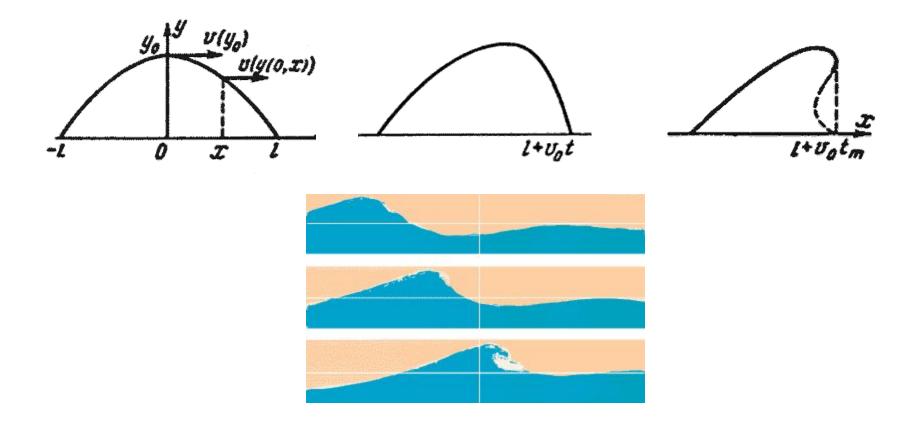
$$u = u(z, t); v_{rp} = c_0 = const.$$

 $\frac{\partial u}{\partial t} + c_0 \cdot \frac{\partial u}{\partial z} = 0; u(z, 0) = f(z)$

Решение:

$$u(z,t) = f(z - c_0 t)$$

Волновой пакет распространяется с постоянной скоростью с сохранением своей формы.



Так ведет себя нелинейная волна на поверхности воды при отсутствии дисперсии. Ее скорость не зависит от длины волны, но увеличивается с ростом амплитуды. Гребень волны движется быстрее, чем подошва, фронт становится все круче, и волна опрокидывается..

Нелинейные волны в среде без дисперсии и диссипации

$$v_{\rm rp} = v_{\rm rp}(u)$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial z} = 0$$

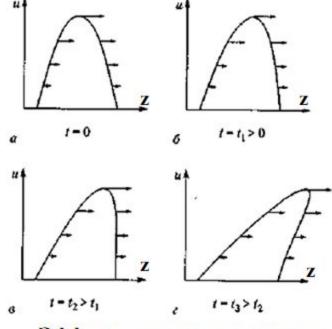
 $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial z} = 0$ — уравнение волны в системе отсчета, движущейся вместе с волной.

$$u(z,0) = f(z)$$

$$u(z,t) = f(z - ut)$$

неявное решение Римана.

Бернхард Риман (1826 - 1866)



Эффект укручения волны.

Солитон Рассела

Солитон Джона Рассела. 1834

"Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась. Но масса воды, которую баржа привела в движение, собралась около носа судна в состоянии бешеного движения, затем неожиданно оставила его позади, катясь вперед с огромной скоростью и принимая форму большого одиночного возвышения - округлого, гладкого и четко выраженного водяного холма. Он продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхом, и когда нагнал его, он по-прежнему катился вперед со скоростью примерно 8-9 миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до полутора футов. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала".

Нелинейные волны

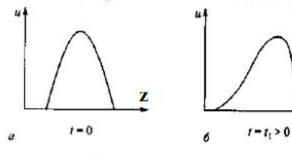
в диссипативной недиспергирующей среде

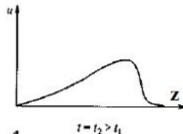
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial z} = a \frac{\partial^2 u}{\partial z^2}$$
 — уравнение Бюргерса.

$$a = \frac{k_T}{\rho c_p} \left[\frac{M^2}{c} \right]$$

 $a=rac{k_T}{
ho c_p} \left[rac{{
m M}^2}{{
m c}}
ight] -$ коэффициент температуропроводности.

Йоханнес Бюргерс (1895 - 1981)





Влияние диссипации приводит к тому, что процесс укручения останавливается и формируется тонкий крутой волновой фронт – ударная волна, которая с течением времени расплывается и затухает.

$$\tau_{\rm M} \ll \tau_{\rm DMC} = \frac{L^2}{a}$$

Волны в нелинейной среде с дисперсией

(1848 - 1941)

О1

 $\frac{\partial u}{\partial t} + \sigma u \frac{\partial u}{\partial z} + \frac{\partial^3 u}{\partial z^3} = 0$

Дидерик Кортевег σ – параметр.

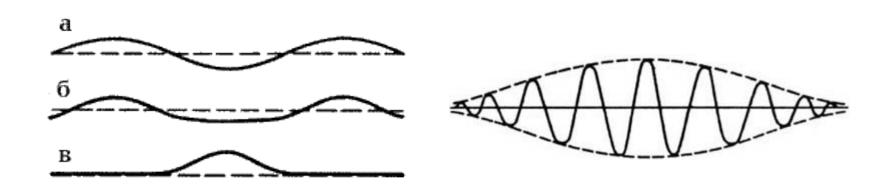
Густав де Фриз (1866-1934)

Уравнение Кортевега – де Фриза (КдФ) описывает случай слабой дисперсии и слабой нелинейности.

Эрвин Шредингер (1887–1961)

$$i\frac{\partial u}{\partial t} + \sigma \frac{\partial^2 u}{\partial z^2} + \gamma |u|^2 u = 0$$

Нелинейное уравнение Шредингера описывает случай сильной дисперсии и слабой нелинейности.

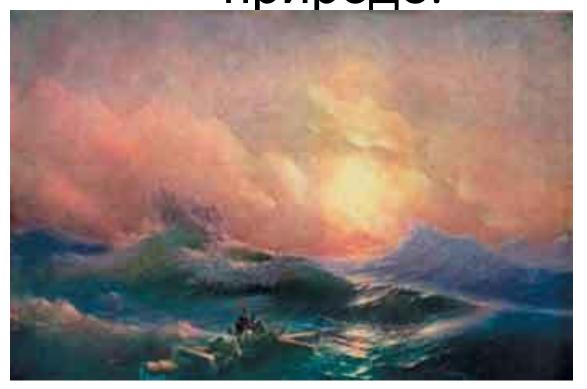


Обычная линейная волна имеет форму правильной синусоиды (а). Нелинейная волна Кортевега - де Фриза выглядит как последовательность далеко разнесенных горбиков, разделенных слабо выраженной впадиной (б).

При очень большой длине волны от нее остается только один горб - 'уединенная' волна, или солитон (в).

Но уединенный горб на воде можно представить в виде суммы составляющих с разной длиной волны. Если среда обладает дисперсией, длинные волны в ней побегут быстрее коротких, выравнивая крутизну фронта. В определенных условиях дисперсия полностью компенсирует влияние нелинейности, и волна будет долго сохранять свою первоначальную форму - образуется солитон

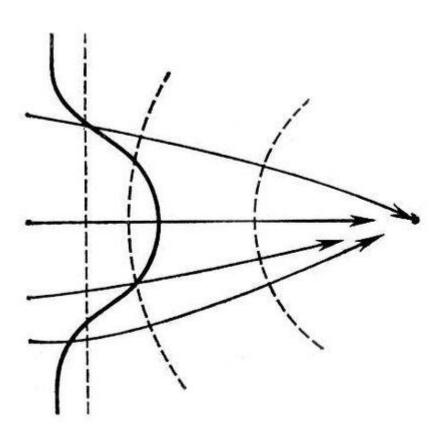
Так выглядит групповой солитон природе.



Это не 'уединенная' волна, а группа из 14-20 волн (цуг, или волновой пакет) с одной длиной волны, но с различной амплитудой, которая распространяется как одно целое, сохраняя форму огибающей. Самая высокая волна находится посередине группы; это и есть знаменитый 'девятый вал'.

Самофокусировка волн

Изменение хода лучей и самофокусировка света в среде с показателем преломления, зависящим от интенсивности света; стрелками показан ход лучей; пунктир — поверхности постоянной фазы; сплошная линия — распределение интенсивности света

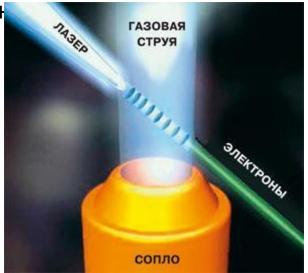


Самофокусировка света

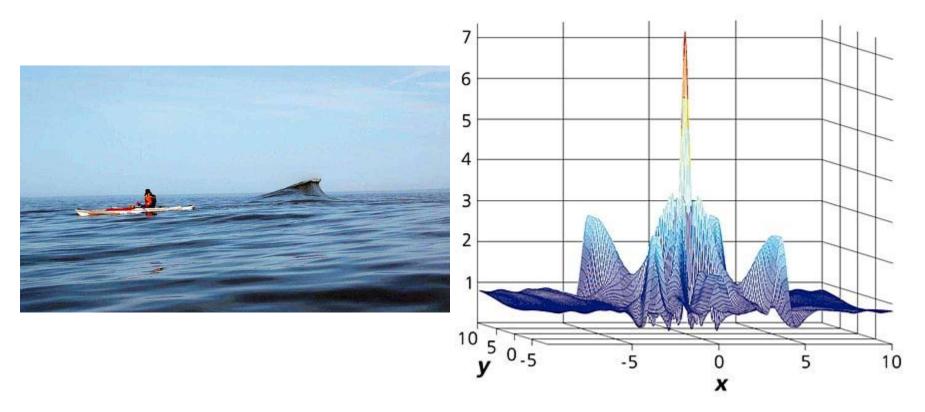
В этом случае возникает так называемая нелинейная рефракция: в поле ограниченного пучка однородная нелинейная среда: в поле ограниченного пучка однородная нелинейная среда становится неоднородной; мощный луч электромагнитного излучения: в поле ограниченного пучка однородная нелинейная среда становится неоднородной; мощный луч электромагнитного излучения, проходя сквозь вещество, изменяет его свойства, что, в свою очередь, искривляет путь самого луча. Поэтому в зависимости от того, увеличивается или уменьшается показатель преломления в поле пучка

(то есть от знака нелинейности), наблюдается кон

или, наоборот, ее рассеяние.



Самосжатие волновых пакетов (волновой коллапс, модуляционная неустойчивость)



http://wsyachina.narod.ru/physics/surge_2.html

Статья Пелиновского и Слюняева о волнах-убийцах

Вопны-убийны

