университет растительных полимеров

Михальченко Марина Николаевна

## ПОЛУЧЕНИЕ ТРИФТОРАЦЕТАТА ТЕРПИНА

Руководитель: д.х.н., проф. Тришин Ю. Г.

2007 год

## Известные сложные эфиры на основе терпеновых спиртов

Цитронеллилформиат

Терпенилацетат

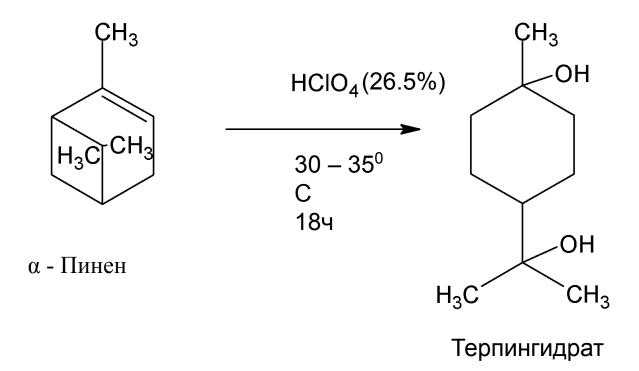
Линалилацетат

Вальтерилацетат

## Сложные эфиры терпеновых спиртов и трифторуксусной кислоты

$$CF_3COOH$$
  $CF_3COOH$   $CF_3COOH$   $CCF_3COOH$   $CCF_3C$ 

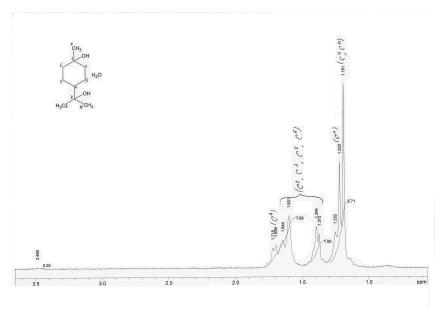
СН3 
$$(CF_3CO)_2O$$
  $-CF_3COOH$   $-CF_3COOH$   $-CF_3COOH$   $-CF_3COOH$   $-CF_3COOH$   $-CF_3COOH$   $-CF_3COOH$   $-CH_3$   $-CH_3$ 

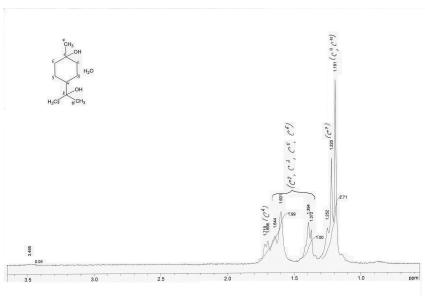

Ментол

3

### Получение трифторацетатов терпина

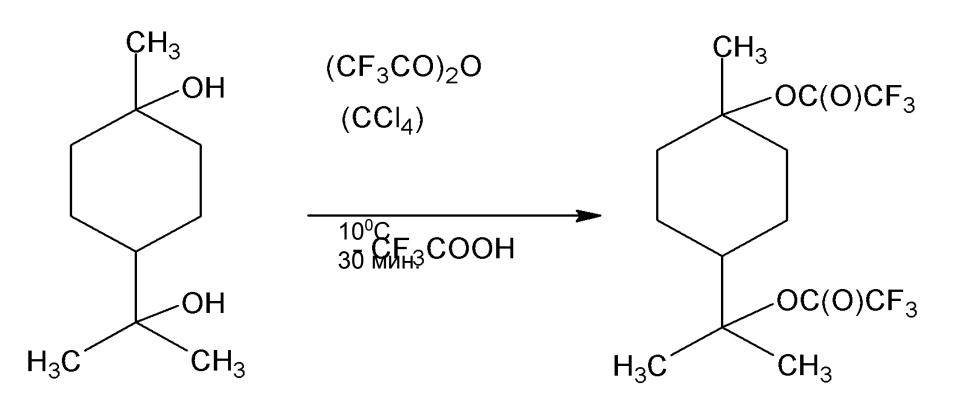
$$CH_3$$
  $CH_3$   $CH_3$   $CCIO)$   $CF_3COOH$   $CF_3COOH$   $CF_3COOH$   $CF_3COOH$   $CIO)$   $CIO$ 


### Получение терпингидрата




## ЯМР <sup>1</sup>Н спектры терпингидрата

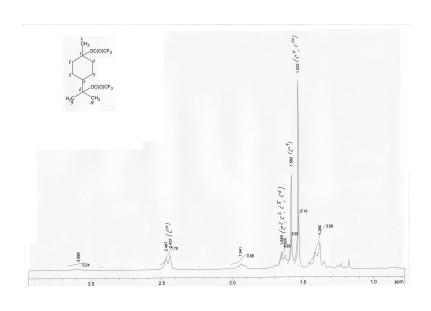
#### 1) Синтезированный образец

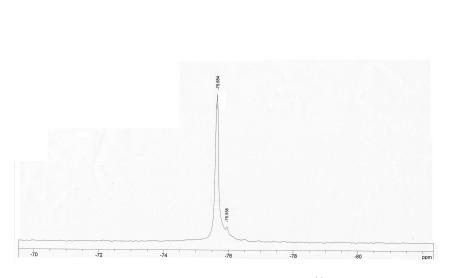

#### 2) Стандартный образец





- 1. Метиновый протон у  $C^4$  мультиплет  $\delta$  1.68 1.75 м.д.
- 2. Протоны метильной группы  $C^7$  синглет  $\delta$  1.22 м.д.
- 3. Метильные протоны в изопропильном радикале синглет  $\delta 1.19$  м.д.
- 4. Метиленовые протоны  $C^2$ ,  $C^3$ ,  $C^5$ ,  $C^6$  мультиплет  $\delta$  1.33 1.65 м.д.


## Получение бистрифторацетата терпина из терпингидрата



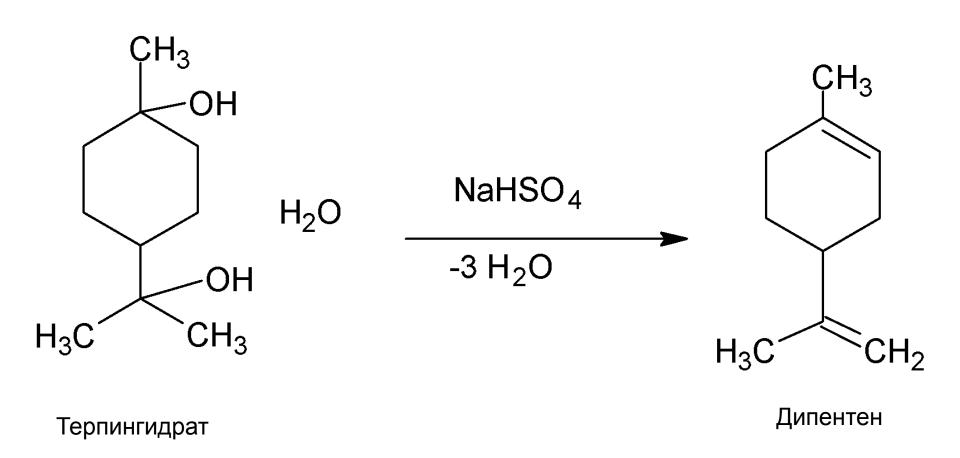

Терпингидрат

Бистрифторацетат терпина

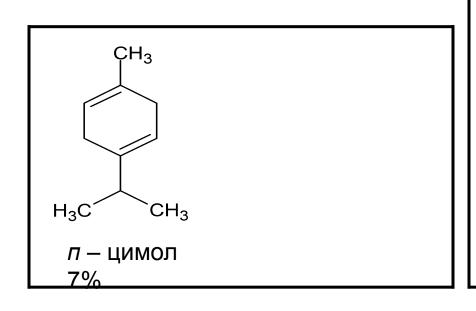
### ЯМР спектры бистрифторацетата терпина






#### ЯМР <sup>19</sup>F спектр

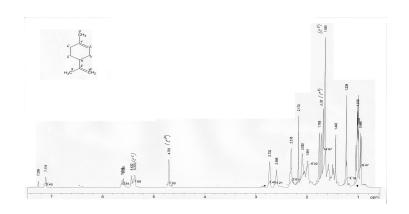
 $\delta_{_{\rm F}}$  - 75.65 м.д.


#### ЯМР <sup>1</sup>H спектр

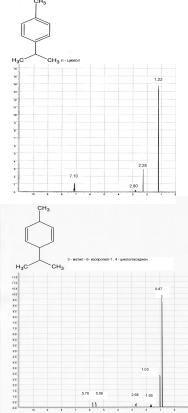
- 1. Метиновый протон  $C^4$  мультиплет  $\delta$  2.44 м.д. (1.70 м.д.)
- 2. Протоны метильной группы  $C^7$  синглет  $\delta$  1.58 м.д. (1.22 м.д.)
- 3. Метильные протоны в изопропильном радикале синглет δ 1.53 м.д.(1.19 м.д.)
- 4. Метиленовые протоны у  $C^2$ ,  $C^3$ ,  $C^5$ ,  $C^6$  мультиплет  $\delta$  1.65 1.80 м.д.(1.33 1.65 м.д.)

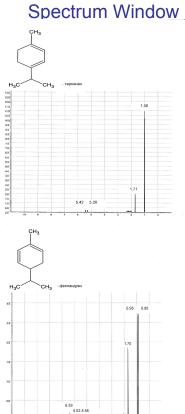
## Получение дипентена

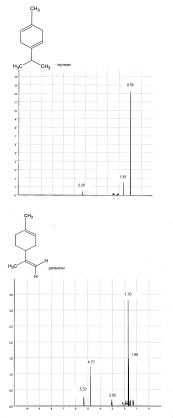



#### Состав технического дипентена




От 5% до 10% содержание каждого


- **1** α Терпинен
- 2  $\gamma$  Терпинен
- 3 α Фелландрен
- 4 3- Метил-6-изопропил-1,4циклогексадиен


#### ЯМР $^{1}$ Н спектр полученного технического дипентена



## Теоретические ЯМР <sup>1</sup>Н спектры изомерных терпенов, созданные с помощью программы ACD/HNMP



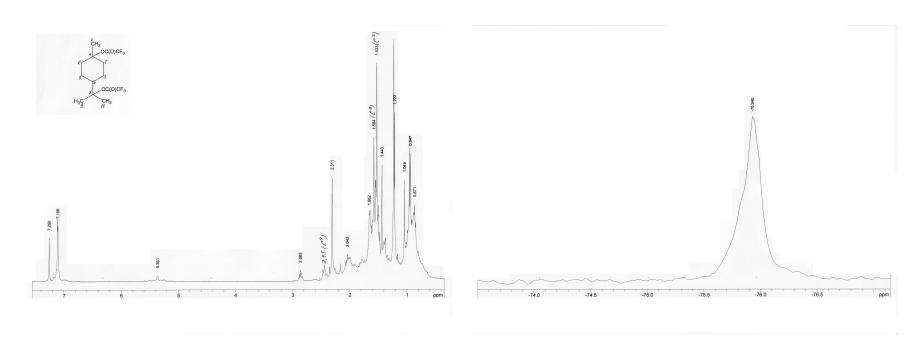




# Взаимодействие технического дипентена с трифторуксусной кислотой

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CF_3COOH} \\ \mathsf{(C_6H_5CH_3)} \\ \mathsf{H_3C} \\ \mathsf{CH_2} \\ \end{array} \begin{array}{c} \mathsf{CH_3} \\ \mathsf{OC(O)CF_3} \\ \mathsf{H_3C} \\ \mathsf{CH_3} \\ \end{array}$$

#### Также, вероятно, образуются


$$F_3C(O)CO$$
 $OC(O)CF_3$ 
 $H_3C$ 
 $CH_3$ 

$$F_3$$
C(O)CO  $OC(O)CF_3$ 

$$F_3C(O)CO$$
 $OC(O)CF_3$ 
 $H_3C$ 
 $CH_3$ 

$$\begin{array}{c} \text{CH}_3\\ \text{OC(O)CF}_3\\ \\ \text{OC(O)CF}_3\\ \\ \text{CH}_3\\ \end{array}$$

## Спектры ЯМР продукта взаимодействия технического дипентена с трифторуксусной кислотой



#### ЯМР <sup>1</sup>H спектр

- 1. Метильные протоны  $C^7$  синглет  $\delta$  1.53 м.д. (1.66 м.д.)
- 2. Метильные протоны  $C^9$  синглет  $\delta$  1.58 м.д. (1.70 м.д.)
- 3. Метиновый протон  $C^4$  мультиплет  $\delta$  2.45 м.д.(3.05м.д.)
- 4. Отсутствует сигнал метинового протона у  $C^2$  (5.33м.д.)

#### ЯМР <sup>19</sup>F спектр

 $\delta_{_{\rm F}}$  - 75.94 м.д.

## Выводы

- 1. В результате взаимодействия терпингидрата с трифторуксусным ангидридом впервые получен бистрифторацетат терпина, строение которого подтверждено данными ЯМР <sup>1</sup>Н и <sup>19</sup>F спектроскопии.
- 2. Показано, что при действии избытка трифторуксусной кислоты на технический дипентен, представляющий собой смесь терпенов *п* ментанового ряда, происходит присоединение кислоты практически по всем связям C=C.