Лекция 3. Кинематика вращательного движения

- 3.1. <u>Равномерное вращательное</u> движение.
- 3.2. <u>Неравномерное вращательное</u> движение.
- 3.3. <u>Кинематика вращательного</u> движения тела вокруг оси.

3.1. Равномерное вращательное движение

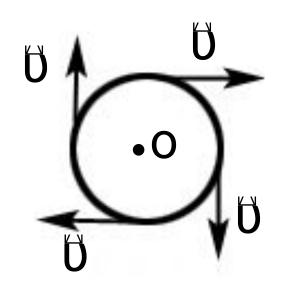


Рис.3.1

При движении тела по окружности с постоянной по величине скоростью о говорят, что оно совершает равномерное вращательное движение.

Поскольку ускорение определяется как быстрота изменения скорости,

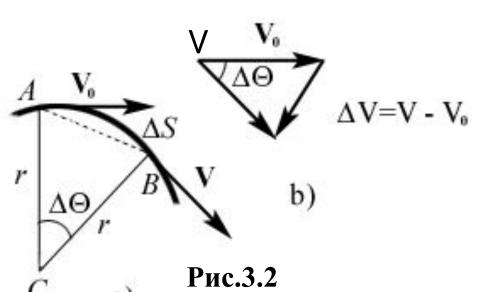
изменение направления скорости даёт вклад в ускорение точно так же, как и изменение величины скорости.

Таким образом, тело, совершающее равномерное вращательное движение, ускоряется.

Теперь изучим это ускорение количественно. Ускорение определяется следующим образом:

$$\ddot{\mathbf{a}} = \lim_{\Delta t \to 0} \frac{\Delta \ddot{\mathbf{0}}}{\Delta t} = \frac{\mathbf{d}\ddot{\mathbf{0}}}{\mathbf{d}t},$$

где $\Delta \theta$ - изменение скорости за малый промежуток времени Δt . Нас интересует в конечном счёте ситуация, когда Δt стремится к нулю, то есть когда мы имеем дело с мгновенным ускорением.



За время Δt тело переместится из точки A в точку B, пройдя небольшое расстояние, Δs которое стягивается малым углом $\Delta \Theta$.

Изменение вектора скорости равно $\Delta \vec{V} = \vec{V} - \vec{V}_0$.

Из этой диаграммы видно, что если Δt мало, то вектор будет почти параллелен вектору $\nabla_{\mathbf{O}}$, а $\Delta \nabla$ почти перпендикулярен им, то есть вектор $\Delta \nabla$ направлен к центру окружности.

Поскольку по определению ускорение \Box совпадает по направлению с ΔV , оно тоже направлено к центру окружности.

Поэтому это ускорение и называют центростремительным ускорением. Мы обозначали его в предыдущей лекции как a_n и записали без вывода, что

$$a_n = \frac{v^2}{r}$$
.

На рис. 3.2,b векторы ∇ , ∇_0 и $\Delta \nabla$ образуют треугольник, который подобен треугольнику ABC на рис. 3.2,a. Это следует из того факта, что угол между ∇ и ∇_0 равен $\Delta \Theta$ ($\Delta \Theta$ -угол, образуемый прямыми CA и CB), поскольку CA и CB_{\perp} ∇_0 . Таким ∇ образом, мы можем записать

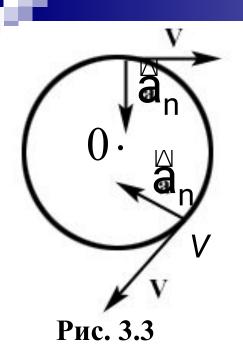
$$\frac{\Delta V}{V} = \frac{\Delta s}{r}$$
 , или $\Delta V = V(\Delta s/r)$.

Если $\Delta t \to 0$, то последние равенства выполняются точно, поскольку при этом длина дуги ΔS равна длине хорды AB. Чтобы найти величину центростремительного ускорения a_n , воспользуемся последним выражением для ΔV . Таким образом, мы имеем

$$a_n = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \lim_{\Delta t \to 0} \frac{V}{r} \frac{\Delta s}{\Delta t}$$

А поскольку
$$\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = V$$
, получаем $a_n = \frac{V^2}{r}$.

Подведём итоги. Мы получили, что тело, движущееся по окружности радиуса r с постоянной скоростью V, обладает ускорением, направленным к центру окружности, величина которого определена выше.



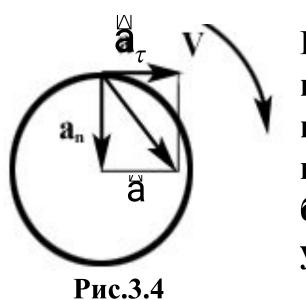
Неудивительно, что это ускорение зависит от *V* и *r*. Чем больше скорость *V*, тем быстрее она меняет своё направление, а чем больше радиус, тем медленнее изменяется направление скорости. Впервые это соотношение было получено во второй половине XVII в. независимо Ньютоном и Гюйгенсом.

Следует заметить, что для описания различных видов движения не существует какого-либо общего соотношения между направлениями ∀и ♂а. В случае прямолинейного движения (например, когда тела падают по вертикали) ∀ и ♂а направлены параллельно друг другу. В случае же равномерного вращательного движения они перпендикулярны друг другу (рис.3.3),

поскольку скорость направлена по касательной к окружности, а ускорение направлено к её центру; при этом направления как \forall , так и $\ddot{\mathsf{a}}$ изменяются. В общем случае баллистического движения (имеющего вертикальную, так и горизонтальную составляющую) व постоянно и по величине и по направлению (направлено вниз, а величина его равна ускорению свободного падения д) и образует со скоростью различные углы по мере прохождения баллистической траектории.

При рассмотрении свободного падения и баллистического движения, поскольку в этих случаях а постоянно как по величине так и по направлению, можно пользоваться кинематическими уравнениями для случая движения с постоянным ускорением. Однако в случае равномерного вращательного движения их применять нельзя, поскольку направление ускорения изменяется.

3.2. Неравномерное вращательное движение



Если скорость частицы, вращающейся по окружности, изменяется по величине, то наряду с центростремительным \mathbf{a}_{n} ускорением будет иметь место и тангенциальное ускорение \mathbf{a}_{τ} , которое возникает из-за

изменения величины вектора скорости. Тангенциальное ускорение всегда направлено по касательной к окружности, и, если скорость увеличивается, то его направление совпадает с направлением движения (параллельно ♥ , как показано на рис. 3.4. для тела, движущегося по часовой стрелке).

В любом случае a_n^N и a_τ^N всегда перпендикулярны друг другу, а их направления непрерывно меняются по мере движения тела по круговой траектории. Вектор полного ускорения является суммой этих двух ускорений:

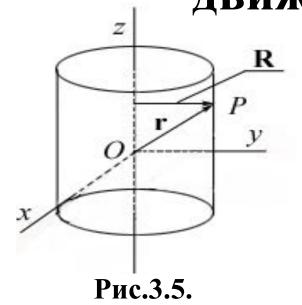
$$\ddot{\mathbf{a}} = \ddot{\mathbf{a}}_{\mathbf{n}} + \ddot{\mathbf{a}}_{\tau} .$$

Поскольку а и а всегда перпендикулярны друг другу, величина ускорения в любой момент времени равна

$$a = \sqrt{a_n^2 + a_\tau^2}$$

3.3. Кинематика вращательного

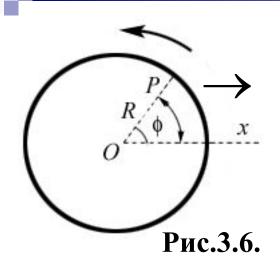
движения тела вокруг оси



Рассмотрим твёрдое тело, которое вращается вокруг неподвижной оси. Пусть некоторая точка движется по окружности радиуса *R* (рис.3.5).

R - расстояние по перпендикуляру от оси вращения до рассматриваемой точки или частицы.

Мы ввели это новое обозначение, чтобы отличить R от r, поскольку через r будем по прежнему обозначать величину радиуса-вектора частицы относительно начала некоторой системы координат. Разница между этими величинами показана на рис. 3.5. Для тонкого диска, например, R и r, совпадают.



Каждая частица тела, вращающегося вокруг неподвижной оси, движется по окружности радиуса R, центр которой лежит на оси вращения. Линия, проведённая перпендикулярно оси вращения к любой точке тела, за

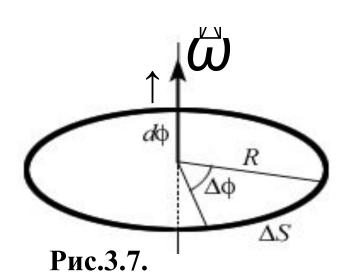
одинаковые промежутки времени поворачивается на один и тот же угол φ . Чтобы определить положение тела или угол, на который оно повернётся, угол φ будем отсчитывать от некоторой опорной линии, например от оси x (рис.3.6). Частица, принадлежащая телу (например, P на рис.3.5) перемещается на угол φ и проходит расстояние S, измеряемое вдоль её траектории, которая представляет собой окружность.

Углы принято измерять в градусах, но математические выражения, описывающие вращательное движение, выглядят проще, если измерять углы в радианах. Один радиан (рад) определяется как угол, стягиваемый дугой, длина которой равна радиусу. Например, если R = S, то ф точно равно одному радиану. В общем случае любой угол (в радианах) определяется выражением

$$\varphi = \frac{S}{R}$$
,

где R — радиус окружности, а S — длина дуги, стягиваемой углом φ .

3.3.1. Угловая скорость



Пусть некоторая точка движется по окружности радиуса R (рис.3.7). Её положение через промежуток времени t зададим углом $d\varphi$. Элементарные (бесконечно

малые) углы поворота рассматривают как векторы. Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, то есть подчиняется правилу правого винта (рис.3.7). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или аксиальными векторами.

Эти векторы не имеют определённых точек приложения: они могут откладываться из любой точки оси вращения.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Вектор ω направлен вдоль оси вращения по правилу правого винта, то есть так же, как и вектор $d\varphi$ (рис.3.7). Размерность угловой скорости $\dim = T^{-1}$, а ее единица – радиан в секунду (рад/с).

Линейная скорость точки (рис.3.8):

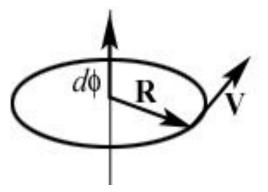


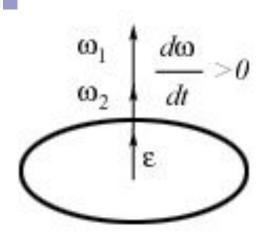
Рис.3.8.

$$V = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t} = \lim_{\Delta t \to 0} \frac{R \Delta \varphi}{\Delta t} = R \omega,$$
T.e. $V = \omega R$

В векторной форме формулу для линейной скорости можно написать как векторное произведение:

$$\vec{\mathsf{V}} = [\vec{\omega}\vec{\mathsf{R}}]$$

При этом модуль векторного произведения, по определению, равен $\omega R \sin(\omega^* R)$, а направление совпадает с направлением поступательного движения правого винта при его вращении от \Box к \ddot{R} .



a)

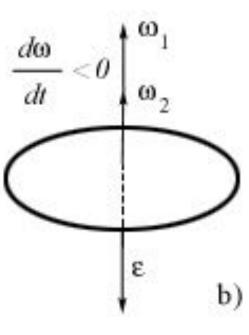


Рис.3.9.

Если ω=const, то вращение равномерное и его характеризовать периодом вращения Т временем, за которое точка совершает один полный оборот, то есть поворачивается на угол 2π. Так как промежутку $\Delta t = T$ времени cootbetctbyet $\Delta \phi = 2\pi$, to $\omega = 2\pi/T$, откуда $T = \frac{2\pi}{2\pi}$.

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

$$n = \frac{1}{T} = \omega/2\pi$$
 Откуда $\omega = 2\pi n$.

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

$$\mathbf{\hat{\epsilon}} = \frac{d\mathbf{\hat{\omega}}}{dt}$$

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис. 3.9, *a*), при замедленном — противоположно направлен (рис. 3.9, *b*).

Тангенциальная составляющая ускорения:

$$a_{\tau} = \frac{d\upsilon}{dt}$$
, $\upsilon = \omega R$, $a_{\tau} = \frac{d(\omega R)}{dt} = R \frac{d\omega}{dt} = R\varepsilon$

Нормальная составляющая ускорения:

$$a_n = \frac{v^2}{R} = \frac{\omega^2 R^2}{R} = \omega^2 R$$

Таким образом, связь между линейными (длина пути S, пройденного точкой по дуге окружности радиуса R, линейная скорость V, тангенциальное a_{τ} и нормальное a_{η} ускорение) и угловыми величинами (угол поворота ϕ , угловая скорость ω , угловое ускорение ε) выражается следующими формулами:

$S=R\varphi$ $v=R\omega$	$a_{\tau} = R\varepsilon$	$a_n = \omega^2 R$
--------------------------	---------------------------	--------------------

В случае равнопеременного движения точки по окружности (ε =const): ω = ω_0^{\pm} ϵt , φ = ω_0^{0} t $\pm \epsilon t^{2/2}$, где ω_0^{0} – начальная угловая скорость.

Лекция окончена!