Безопасность жизнедеятельности в чрезвычайных ситуациях

Воздвиженский Ю.М.

Тема 1. Поражающие ,опасные и вредные факторы, причины их возникновения, воздействие на БЖД людей ,устойчивость работы объекта и защита от них

Тема 2. Устойчивость функционирования объектов связи в условиях ЧС

Тема 3. Организация управления, связи и оповещения

Тема 4. Психология поведения человека в условиях ЧС

Поражающие, опасные и вредные факторы

Поражающие, опасные и вредные факторы

Поражающие - это факторы, возникающие в результате ЧС и приводящие к разрушениям объектов и поражению людей.

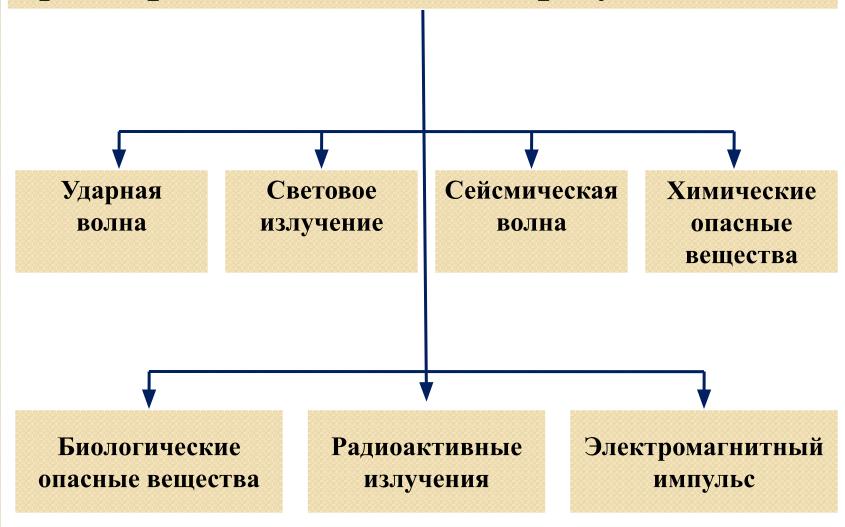
Опасные - это факторы, воздействие которых в условиях ЧС приводит к травмам, резкому ухудшению состояния здоровья человека.

Вредные - это факторы, воздействие которых в условиях ЧС приводит к заболеваниям, снижению работоспособности человека. Вредные факторы могут перейти в опасные.

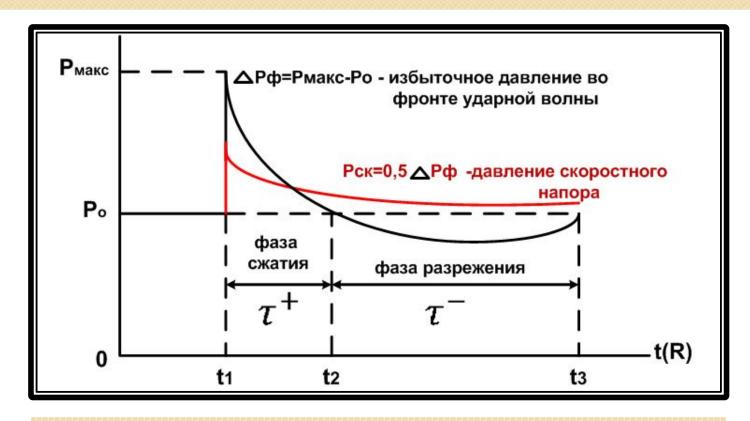
Тема 1. Поражающие ,опасные и вредные факторы, причины их возникновения, воздействие на БЖД людей ,устойчивость работы объекта и защита от них

Введение

Занятие 1. Ударная волна


Занятие 2. Световое излучение

Занятие 3. Химически опасные вещества


Занятие 4. Биологические опасные вещества

Занятие 5. Радиоактивные излучения

Поражающие, опасные и вредные факторы, возникающие в результате ЧС

Параметры воздушной ударной волны

 Δ Рф , Рск измеряется в кГс /см² или Па (1 кГс /см²≈100 кПа)

$$\Delta P_{\Phi}^{\text{тнт}} \approx 105 \sqrt[3]{q_{y_{B}}}/\mathcal{R} + 410 \sqrt[3]{q_{y_{B}}^2}/\mathcal{R}^2 + 1370 q_{y_{B}}/\mathcal{R}^3$$
 где $q_{y_{B}} = q/2$ (q - тротиловый эквивалент ТНТ), кГ R- расстояние до эпицентра взрыва, м.

Световое излучение

$$U^{THT} = 111q/R^2e^{\kappa R}$$
, $U^{TBC} = 111Q/R^2e^{\kappa R}$,

где: q- тротиловый эквивалент, т;

Q- масса нефтепродуктов, т;

R- расстояние до эпицентра взрыва, км;

к=1/км- коэффициент ослабления светового излучения средой распространения.

Для расчетов принимают к= 0,1/км.

$$au_{\text{си}}^{\text{тнт}} \approx \mathbf{0}, \mathbf{1}\sqrt[3]{q}$$
, т, с или $\mathbf{\tau}_{\text{си}}^{\text{гвс}} \approx \mathbf{0}, \mathbf{1}\sqrt[3]{Q}$, т, с

$$t^{o}_{\text{тела}} = t^{o}_{\text{нач}} + \Delta T^{o},$$

$$\Delta T^0 = (1,13U_T)/(\lambda C_V t)^{-0.5}$$

где: U_т- поглощенная часть СИ;

λ - коэффициент теплопроводности;

С _у – удельная теплоемкость;

t- время наибольшей температуры огненного шара

Особенности взрыва ГВС

$$\Delta P_{\Phi}^{\Gamma BC} pprox rac{233,3}{\sqrt{1+29,8\kappa^3}-1}$$
 при $\kappa < 2$

$$\Delta P_{\Phi}^{\Gamma BC} pprox rac{22}{\sqrt{lgk+0,158}} \qquad ext{при } \kappa \, > 2$$

$$k = 0.014 \frac{R, \text{KM}}{\sqrt[3]{Q, T}}$$

Q,T	10	100	500	1000
RI,M	40	90	150	190
RII≈1,7RI,M	68	153	255	323

Сравнительная таблица интенсивности землетрясения I в баллах с избыточным давлением $\Delta P_{_{f d}}$,кПа

І,балл	5	6	7	8	9
ΔP_{ϕ} ,κ Πa	10	20	30	40	50

Химические опасные вещества

Отравляющие вещества(ОВ) используются для поражения людей

Сильнодействующие ядовитые вещества (СДЯВ). Используются в промышленности, медицине, сельском хозяйстве.

Основные ОВ

Смертельные ОВ:

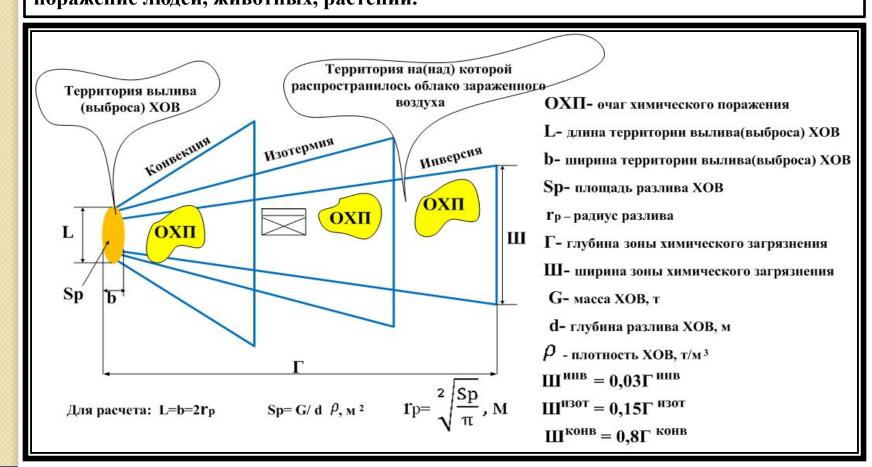
- 1. ОВ нервно-паралитического действия (зарин, зоман, Ви-газы)
- 2. ОВ кожно-нарывного действия (иприт, люизит)
- 3. ОВ общеядовитого действия (синильная кислота, хлорциан)
- 4. ОВ удушающего действия (фосген, дифосген)

ОВ временно выводящие людей из строя:

- 5. ОВ психохимического (BiZ, LSD)
- 6. ОВ раздражающего действия (CS, хлорацетофенон, адамсит)

Основные АХОВ

- 1. Аммиак(NH3)-газ с характерным удушливым запахом и едким вкусом
- 2. Хлор (Cl2)-газ зеленовато-желтого цвета с резким запахом
- 3. Сероводород(H2S)-газ с резким неприятным запахом
- 4. Сернистый ангидрид, сернистый газ (SO₂) газ с резким запахом
- 5. Синильная кислота(HCN) –жидкость с запахом горького миндаля
- 6. Фосген (COCl2) бесцветный газ тяжелее воздуха
- 7. Бензол(С6Н6)-летучее ядовитое вещество
- 8. Фосфор-воскообразное вещество. Ядовиты дымы.


Химическое загрязнение окружающей среды

Местность считается химически загрязненной, если количество ядовитых веществ в воздухе превышает предельно - допустимые концентрации (ПДК).

Зона химического загрязнения - территория, на которой произошел вылив(выброс)

ХОВ, и территория над которой распространилось облако зараженного воздуха.

Очаг химического поражения - территория на которой произошло массовое поражение людей, животных, растений.

Биологические опасные вещества

Бактерии

Бактерии:

- -туберкулез;
- -дезинтерия;
- -чума;
- -холера;
- -сибирская язва и др.

Вирусы

Вирусы:

- -грипп;
- -свинка;
- -краснуха;
- -оспа;
- -полиомелит;
- -энцефалит;
- -гепатиты;
- -СПИД;
- -бешенства;
- -ящур.

Риккетсии

Риккетсии:

- -сыпной тиф;
- -окопная лихорадка;
- -лихорадка скалистых
- гор (США);
- -цуцугумаши (Япония).

Грибки

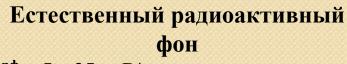
Грибки:

- -поражения кожи,
- волос, ногтей;
- -микозы.

Эпидемия - распространение инфекционных агентов на территории.

Район биологического заражения - территория в пределах которой распространены или привнесены опасные биологические вещества или патогенные организмы, создающие опасность для жизни и здоровья людей и окружающей среды.

Эпидемический очаг - место заражения и пребывания пораженных инфекционными заболеваниями, а также территория, в пределах которой в определенных границах времени возможно заражение людей и животных инфекционными заболеваниями.


Карантин - система мероприятий, включающих режимные, противоэпидемические, санитарные и лечебно-профилактические мероприятия, направленные на локализацию и ликвидацию очага биологического заражения.

Обсервация - усиленное медицинское наблюдение на определенной территории, проведение на ней лечебно- профилактических и изоляционно-ограничительных мероприятий, направленных на предупреждение распространения инфекционных заболеваний. Этот режим может вводиться в районах с неблагополучным или чрезвычайным санитарно - эпидемическим состоянием и при появлении единичных случаев инфекционных заболеваний.

Основные источники радиоактивных (р/а) излучений

Естественные источники радиоактивных излучений

Искусственные источники радиоактивных излучений

 $P^{p\phi} \approx 5...25$ мкР/ч Добл ≈ 240 мбэр/г Добл^{70лет} ≈ 17 бэр Искусственный радиоактивный фон

Техногенно измененный радиоактивный фон

Естественные источники радиоактивных (р/а) излучений Земные источники р/а излучений- 26% (калий, уран, торий, цезий и др.) Космические р/а излучения- 13% Внутреннее облучение человека -12% Р/а инертный газ радон Природное топливо (уголь, сланец и пр.) Строительные материалы С/х удобрения (калийные соли, фосфаты)

Добл ≈ 240 бэр/г

Добл≈ 17 бэр/г за 70 лет

Искусственные источники радиоактивных (р/а) излучений Урановая промышленность Ядерные реакторы разных типов Радиохимическая промышленность

Места захоронения р/а отходов (ОЯТ)

Использование р/а источников

Изотопные лаборатории

Военная деятельность

промышленности

в космосе

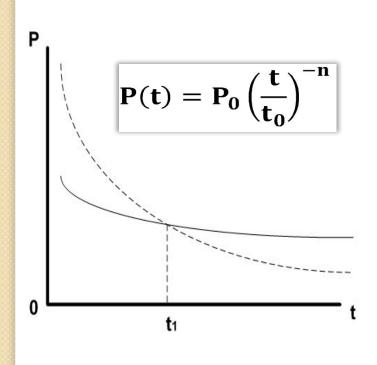
аппаратура

Использование радионуклидов в медицине,

электропитания в космических исследованиях

Выпадение р/а осадков после ядерных взрывов

Локальное РЗМ после ядерных взрывов


Телевизоры, мониторы, рентгеновская

Основные единицы измерения р/а излучений

		e erren de region de la company de region de la company de			
	Величина и её символы	Единица СИ, её обозначение и название	Внесистемная единица, её обозначение и название	Соотношение между единицами	
	Активность-А	Бк - беккерель	Ки - кюри Ки/см²; Ки/м²; Ки/км²; Ки/л; Ки/кг; Ки/м³	1Бк=1 _{расп} / 1 _с 1Кн=3,7*10 ¹⁰ Бк	
	Поглощенная доза - Дпогл	Гр - грей	РАД рад - радиационнная поглощенная доза	1Гр=1Дж/кг=100рад 1рад=1эгр/г=10-2 Гр	
	Эквивалентная доза - Дэкв	Зв - зиверт	БЭР бэр - биологический эквивалент рентгена	13в=1Гр/Q=1(Дж/кг) =100рад/Q=100бэр 1бэр=1рад/Q (Q-коэффициент качества)	
300	Экспозиционная доза,Р	Кл/кг-кулон на килограмм	Р- рентген	1Кл/кг=3,88*10 ³ Р 1Р=2,58*10 ⁻⁴ Кл/кг	
			Рентген- это такое количество рентгеновского или γ-излучений, которое в 1см³ совершенно чистого, сухого атмосферного воздуха при t= 0°C, давлении 760 мм рт.ст. наводит 2,08*10° пар ионов		
	Мощность экспозиционной дозы		Р/ч; мР/ч; мкР/ч.		
	Примечание: 1. Коэффициент качества Q показывает во сколько раз данный вид облучения биологически эффективнее γ -или рентгеновского излучений.				

2.Опытные соотношения: $1 \text{Ки/m}^2 \approx 10 \text{P/ч}; \ 1 \text{мКи/cm}^2 \approx 1 \text{P/ч}; \ 1 \text{Ки/км}^2 \approx 10 \text{мкP/ч};$

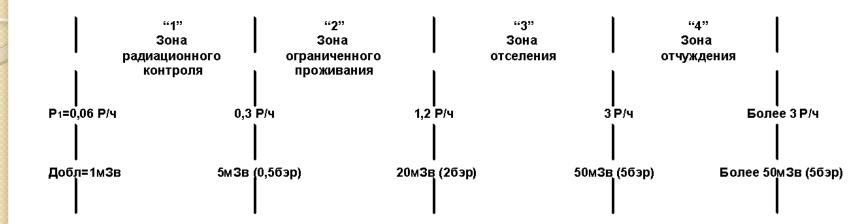
Радиоактивное загрязнение местности (РЗМ)

$$D_{0\delta\pi} = \int_{t_{H}}^{t_{K}} P(t) dt = \int_{t_{H}}^{t_{K}} P_{0} \left(\frac{t}{t_{0}}\right)^{-n} dt$$

$$D_{o\delta\pi} = \frac{P_0 t_0^n}{1-n} (t_{\kappa}^{-n+1} - t^{-n+1})$$

Подставим:
$$P_0 = P_{\scriptscriptstyle H} \left(\frac{t_{\scriptscriptstyle H}}{t_0}\right)^n$$
и $P_0 = P_{\scriptscriptstyle K} \left(\frac{t_{\scriptscriptstyle H}}{t_0}\right)^n$

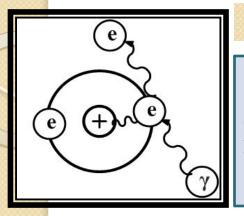
В результате имеем:
$$D_{oбл} = \frac{1}{1-n} (P_{\kappa} t_{\kappa} - P_{\mu} t_{\kappa})$$


И при n=0,4:

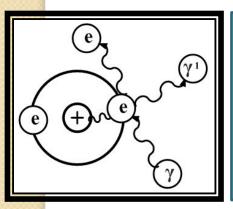
$$D_{oбл}=1$$
, $7(P_{\kappa}t_{\kappa}-P_{\scriptscriptstyle H}t_{\kappa})$ при $K_{ocn}=1$

при $K_{oc.1} > 1$

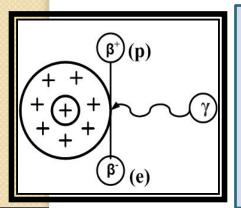
$$D_{o\delta\pi} = \frac{1.7(P_{\kappa}t_{\kappa} - P_{\mu}t_{\kappa})}{K_{oc\pi}}$$


Зоны радиоактивного загрязнения

Примечания


- 1.Зона радиационного контроля Производится мониторинг радиоактивности зданий сооружений, с/Х продукции, доз внешнего и внутреннего облучения населения
- 2.Зона ограниченного проживания Производится мониторинг радиоактивности(см.п.1). Добровольный въезд на территорию для постоянного проживания не ограничен но разъясняется риск ущербу здоровью изза воздействия радиации.
- 3.Зона отселения. Въезд на территорию для постоянного проживания не разрешен Запрещается постоянное проживание лиц репродуктивного возраста и детей Осуществляется радиационный мониторинг людей и объектов внешней среды Принимаются необходимые меры радиационной и медицинской защиты
- 4.Зона отчуждения. Проживание людей не допускается Хозяйственная деятельность и природопользование регулируется специальными актами. Осуществляются меры мониторинга и защиты работающих с обязательным и индивидуальным дозиметрическим контролем

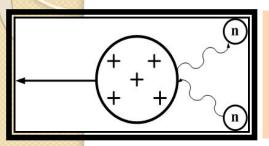
Взаимодействие у-квантов с атомами вещества



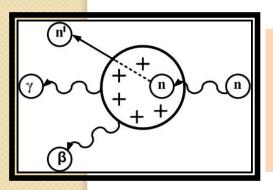
у-кванты взаимодействуют с электронами или полем ядра атомов.

1. Фотоэлектрический эффект: γ-квант передаёт электрону свою энергию и , если эта энергия больше энергии связи электрона с ядром атома, то связь разрывается, появляется свободный электрон и положительно заряженный атом. Реакция обратима.

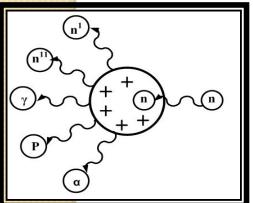
2.Комптоновское рассеяние: γ-квант передает электрону часть своей энергии и, если эта энергия больше энергии связи электрона с ядром, то электрон покидает свою орбиту появляется свободный электрон, т.е. образуется положительно заряженный атом и отрицательно заряженный электрон. В этом случае электрон продолжает движение, заданное ему γ-квантом, и появляется новый, отраженный γ¹-квант с меньшей энергией, который взаимодействует с другими атомами. Реакция обратима.



3. Образование электронно-позитронных пар: γ-квант взаимодействует с положительным полем ядра. Если энергия γ-кванта велика, то поле ядра поглощает γ-квант и становится излучателем двух частиц — электрона(е) и позитрона (р), т.е. возникает электронно-позитронная пара. Реакция обратима.


Вывод: Все виды взаимодействия γ-квантов с атомами вещества приводят к ионизации вещества, т.е. появлению свободных электрических зарядов.

Взаимодействие нейтронов с атомами вещества


Нейтроны взаимодействуют только с ядром атомов и ведут к изменению структуры вещества

1. Упругое взаимодействие (столкновение двух шаров). Нейтрон передает часть своей энергии ядру атома, которое смещается со своего места, а нейтрон меняет своё направление и взаимодействует с другими атомами. При таком взаимодействии разрушается или изменяется кристаллическая решётка полупроводников. Реакция необратима.

2. Неупругое взаимодействие (характерно для нейтронов с большой энергией): нейтрон проникает внутрь ядра , передает ему часть энергии. Возникает новый нейтрон \mathbf{n}^1 с меньшей энергией. Кроме того, ядро начинает излучать энергию в виде γ и β - лучей, которые взаимодействуют с другими атомами, происходит ионизация вещества. Реакция обратима.

3. Захватное взаимодействие (характерно для нейтронов с небольшой энергией): В этом случае нейтрон поглощается ядром, которое получает эту энергию. Ядро само испускает два нейтрона, γ-квант, протон(р) и α-частицу, которые взаимодействуют с другими атомами, происходит ионизация вещества. Реакция обратима.

Основные пределы доз облучения

	Пределы доз облучения за год				
Нормируемые величины	Персонал категории	Персонал категории "Б"	Население РФ		
Эффективная доза облучения за год	20м3в (2 бэр)	5м3в (0,5 бэр)	1м3в (0,1 бэр)		
	В среднем за любые 5 лет, но не более:				
	50м3в (5 бэр)	12,5м3в (1,25 бэр)	5мЗв (0,5 бэр)		