Вычислительная геометрия

Лекция 6

Геометрический поиск Локализация точки Продолжение

Метод трапеций (Зайделя) позже

Геометрический поиск

- Планарные графы. Планарное прямолинейное подразбиение плоскости
- Представление ППЛГ. Реберный список с двойными связями
- Метод цепей (продолжение)
- Метод детализации триангуляции

Геометрический поиск

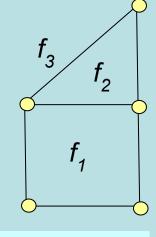
Планарные графы

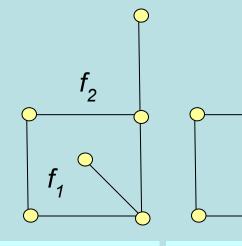
Планарное прямолинейное подразбиение плоскости

Граф G = (V, E) называется *планарным*, если его можно уложить на плоскости без самопересечений.

Планарное подразбиение или карта порождается прямолинейной укладкой ребер планарного графа на плоскости.

$$V = \{ v_1, v_2, ..., v_n \}$$
 — вершины, $E = \{ e_1, e_2, ..., e_m \}$ — ребра, $\{ f_1, f_2, ..., f_l \}$ — грани, n — число вершин, m — число ребер, l — число граней





Формула Эйлера:

$$n + l = m + 2$$

$$n = 5 m = 6$$

 $l = 3$
 $5 + 3 = 6 + 2$

$$n = 5 m = 6$$
 $n = 6 m = 6$ $n = 5 m = 4$
 $l = 3$ $l = 2$ $l = 1$
 $5 + 3 = 6 + 2$ $6 + 2 = 6 + 2$ $5 + 1 = 4 + 2$

$$n = 5 m = 4$$

 $l = 1$
 $5 + 1 = 4 + 2$

Φ ормула Эйлера: n + l = m + 2

G – связный плоский граф. T – его остовное дерево.

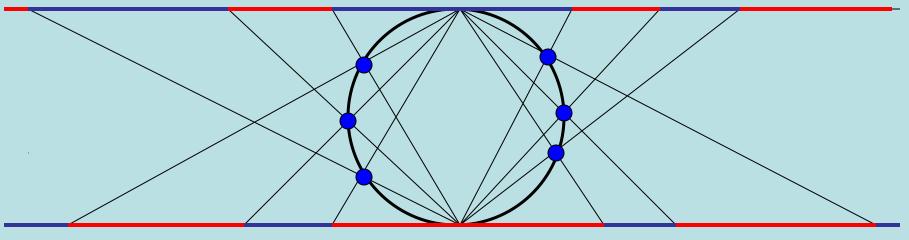
В дереве m = n - 1, l = 1 и т. о. n + 1 = (n - 1) + 2.

Не изменяя n, добавляем к остову ребро \rightarrow образуется грань,

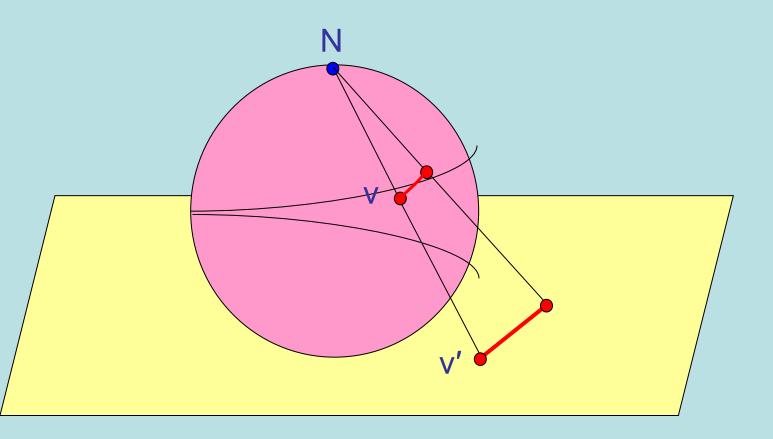
т. е. $m \to m + 1$, $l \to l + 1$ и формула остается верной.

Повторяем эту операцию. При этом формула Эйлера есть инвариант и останется верной после завершения таких шагов и получения графа *G.* ◆

Стереографическая проекция



Стереографическая проекция



$$\frac{\Phi o p M y \pi a \ \exists \ \tilde{u} \pi e p a}{n + l = m + 2}$$

Следствие 1:

Во всяком выпуклом многограннике n + l = m + 2

Следствие 2а:

Для связного планарного графа $m \le 3n - 6$ при $n \ge 3$.

 $d(f_i)$ – степень грани (число ребер границы, мосты – дважды)

$$\sum_{i=1}^{l} d(f_i) = 2m, \quad d(f_i) \ge 3$$

(т.к. граф без петель и параллельных ребер)

T.o. $2m \ge 3l$.

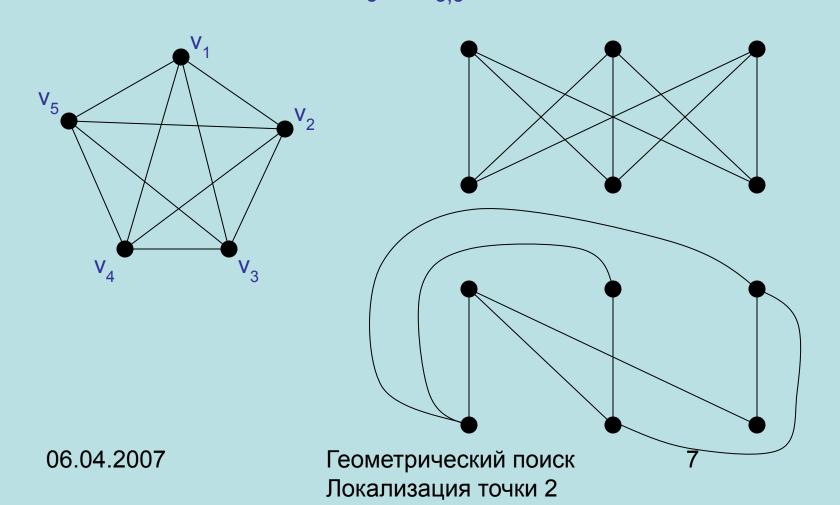
$$l = m + 2 - n \rightarrow 2m \ge 3(m + 2 - n) \rightarrow m \le 3n - 6$$

Формула Эйлера:

$$n + l = m + 2$$

Следствие 2б:

Для связного планарного графа $l \le 2n - 4$ при $n \ge 3$. Следствие 3: Графы K_5 и $K_{3,3}$ не планарны.



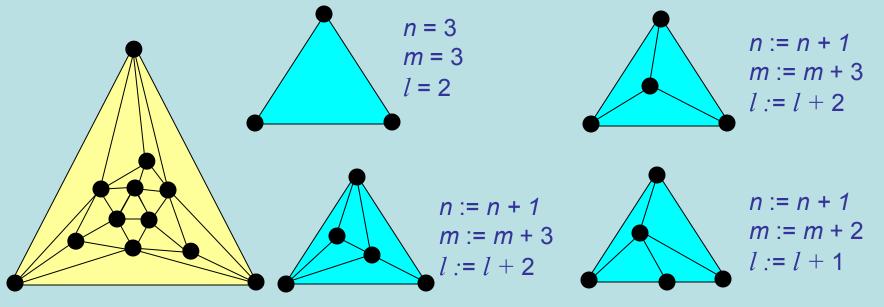
Плоские триангуляции

Триангуляция: все конечные грани – треугольники.

Триангуляция множества точек – триангуляция выпуклой оболочки.

Плоская триангуляция: связный плоский граф, каждая грань которого (в том числе и внешняя) – треугольник.

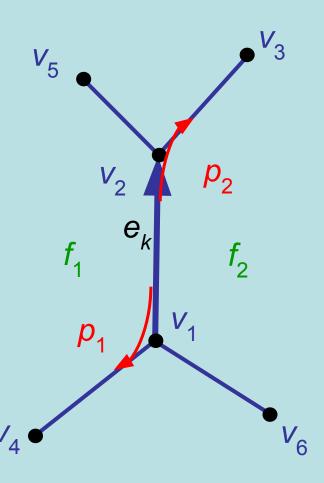
В этом случае m = 3n - 6 и l = 2n - 4



Представление ППЛГ

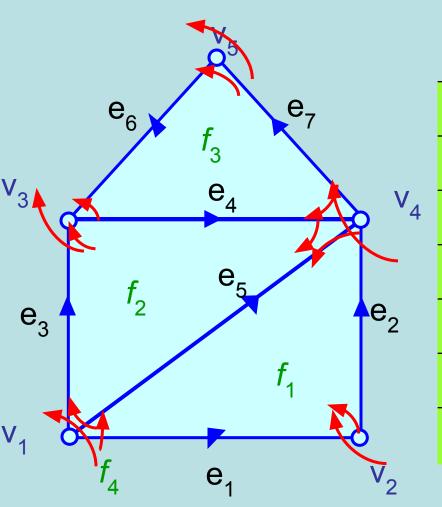
Реберный список с двойными связями (РСДС)

Основная компонента (элемент списка) РСДС – реберный узел



	<i>V</i> 1					
e_{k}	<i>V</i> ₁	V_2	f_1	f_2	p_1	p_2

<u>Представление ППЛГ</u> <u>Реберный список с двойными связями (РСДС)</u>



	<i>V</i> 1	V2	<i>F</i> 1	F2	<i>P</i> 1	P2
e ₁	1	2	1	4	5	2
e_2	2	4	1	4	1	7
e_3	1	თ	4	2	1	4
e ₄	3	4	3	2	6	5
e_5	1	4	2	1	3	2
e_6	5	3	3	4	7	3
e ₇	4	5	3	4	4	6

06.04.2007

Геометрический поиск Локализация точки 2

<u>Представление ППЛГ</u> <u>Реберный список с двойными связями (РСДС)</u>

массивы входов:

- по вершинам head_V [1..n]
- по граням head_F [1../]

V	head_V
V ₁	1
V ₂	2
<i>V</i> ₃	4
V ₄	7
<i>V</i> ₅	6

head_F
1
2
4
7

Представление ППЛГ Реберный список с двойными связями (РСДС)

Процедура «Инцидентные ребра» (см. файл MS Word «РеберныйСписокДС»)

<u>Представление ППЛГ</u> <u>Реберный список с двойными связями (РСДС)</u>

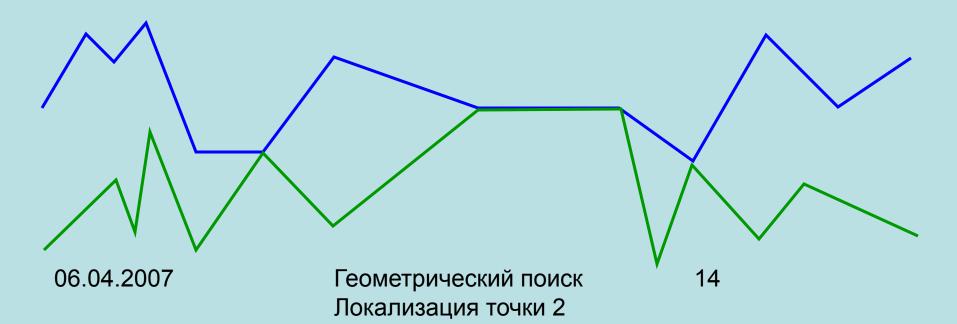
Процедура «Граница грани» (см. файл MS Word «РеберныйСписокДС»)

Метод цепей (продолжение)

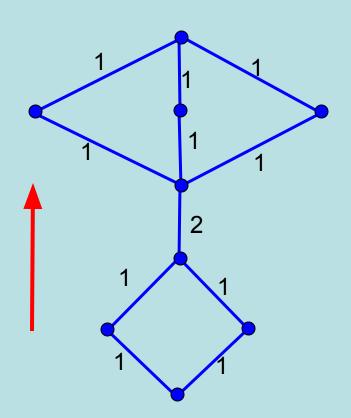
Множество $C = \{C_1, ..., C_r\}$ называется полным множеством монотонных цепей графа, если:

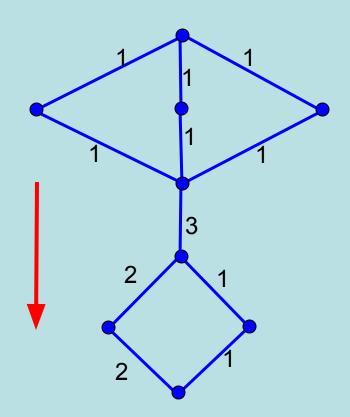
$$1. \begin{tabular}{l} r \\ 1. \begin{tabular}{l} r \\ $j=1$ \end{tabular} \subset_j \supseteq G$$

2. Для \forall i, j ∈ 1..r (I ≠ j): те узлы из $C_{i,j}$, которые не являются узлами $C_{j,j}$, лежат по одну сторону от $C_{j,j}$.

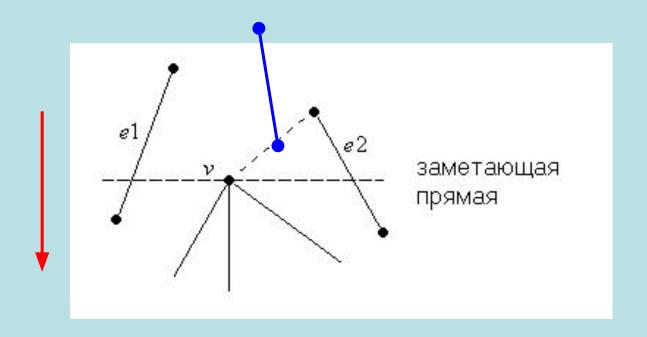


<u>Построение ПММЦ</u> <u>Балансировка весов ребер</u>





Регуляризация графа Метод заметания



Метод детализации триангуляции

См. Документ MWord «Локализация точки» (п.1.3) в папке «Лекция 5»

Локализация точки

Метод трапеций (Зайделя) будет позже

Конец лекции