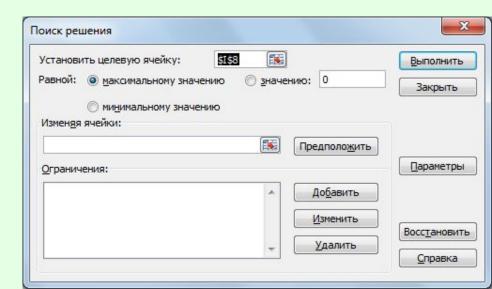


Задачи линейного программи-рования

Одноиндексны е ЗЛП



Задача 1: Постановка

Нефтеперерабатывающая установка может работать в двух режимах. При работе в первом режиме из одной тонны нефти производится 300 кг темных и 600 кг светлых нефтепродуктов; при работе во втором режиме — 700 кг темных и 200 кг светлых нефтепродуктов. Ежедневно на этой установке необходимо производить 110 т темных и 70 т светлых нефтепродуктов. Это плановое задание необходимо ежедневно выполнять, расходуя минимальное количество нефти.

- 1. Сколько тонн нефти следует ежедневно перерабатывать в первом режиме?
- 2. Сколько тонн нефти следует ежедневно перерабатывать во втором режиме?
 - 3. Каков минимальный ежедневный расход нефти?
- 4. На сколько тонн увеличится ежедневный минимальный расход нефти, если потребуется производить в день 80 т светлых нефтепродуктов?

Задача 1: Ввод обозначений

1. Сколько тонн нефти следует ежедневно перерабатывать в первом режиме?

Пусть:

- x_1 кол-во тонн нефти, перерабатываемое в первом режиме;
- 2. Сколько тонн нефти следует ежедневно перерабатывать во втором режиме?
 - x_2 кол-во тонн нефти, перерабатываемое во втором режиме;
 - 3. Каков минимальный ежедневный расход нефти?

Тогда:

 $x_1 + x_2$ – ежедневный расход нефти (тонн).

Задача 1: Формализация ограничений

Технологические особенности, приведенные в условии задачи, для наглядности сведем в таблицу:

Вид	Производство (т)		Ежедневная
нефтепро-	Первый	Второй	потребность
дуктов	режим	режим	(T)
Темные	0,3	0,7	, 110
Светлые	0,6	0,2	70

Тогда:

выход темных нефтепродуктов при работе в первом режиме;

выход темных нефтепродуктов при работе во втором режиме, $0.3 \cdot x_1 + 0.7 \cdot x_2 \ge 110$

Первое ичение

Задача 1: Формализация ограничений

Вид	Производство (т)		Ежедневная	
нефтепро-	Первый	Второй	потребность	
дуктов	режим	режим	(T)	
Темные	0,3	0,7	110	
Светлые	0,6	0,2	/ 70	

Тогда:

 $0.6 \cdot x_1$ — выход темных нефтепродуктов при работе в первом режиме;

 $0.2 \cdot x_2^{2}$ — выход темных нефтепродуктов при работе во втором режиме;

$$0.6 \cdot x_1 + 0.2 \cdot x_2 \ge 70$$

Второе ографичение

Задача 1: Модель задачи

Вид	Производство (т)		Ежедневная	
нефтепро-	Первый режим	Второй режим	потребность (т)	
дуктов	(x_1)	(x_2)		
Темные	0,3	0,7	110	
Светлые	0,6	0,2	70	

<u>Поскольку</u> плановое задание необходимо ежедневно выполнять, расходуя *минимальное* количество нефти

тогда:

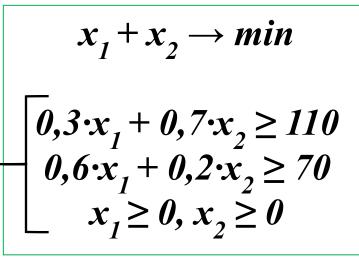
$$x_1 + x_2 \rightarrow min$$

Целевая финкция

$$\begin{array}{c}
-0.3 \cdot x_1 + 0.7 \cdot x_2 \ge 110 \\
0.6 \cdot x_1 + 0.2 \cdot x_2 \ge 70 \\
x_1 \ge 0, x_2 \ge 0
\end{array}$$

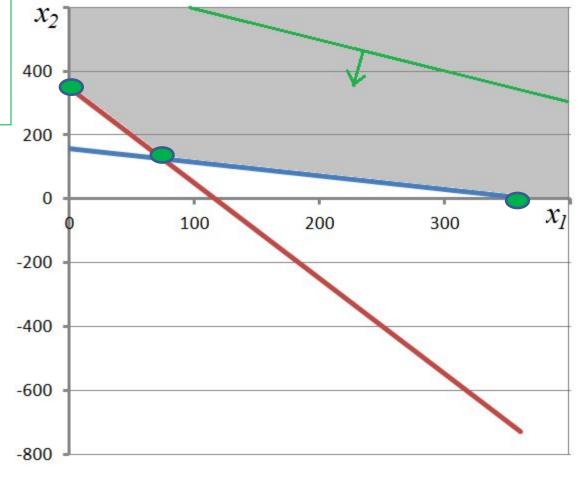
Ограничения

Задача 1: Графическое представление



Ооласть допустимых

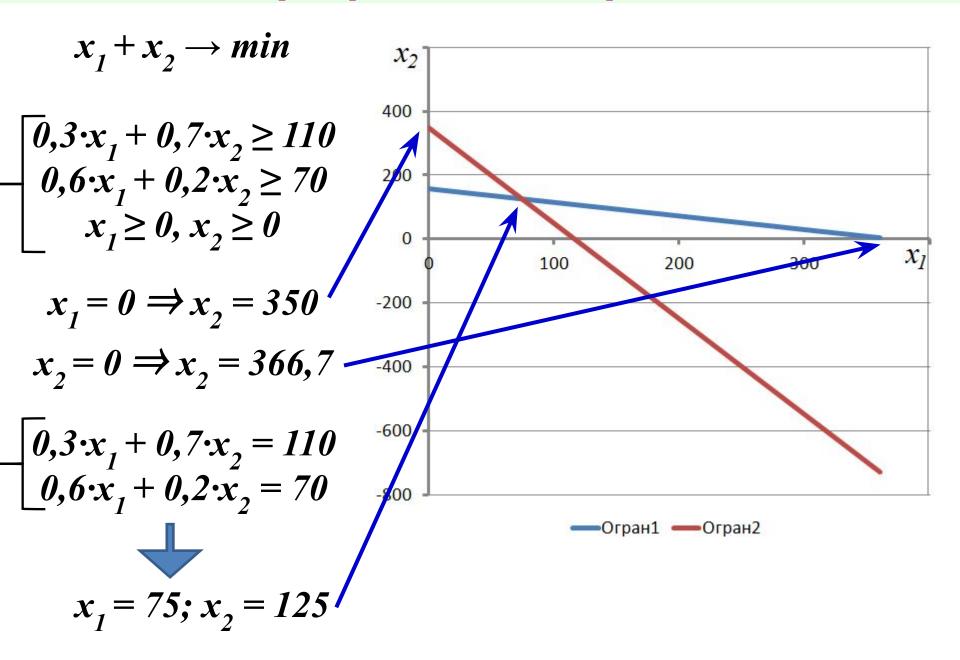
Целевая функция



Огран1 —Огран2

допустимых решений, одна из которых является решением (целевая функция принимает минимальное

Задача 1: Графическое представление



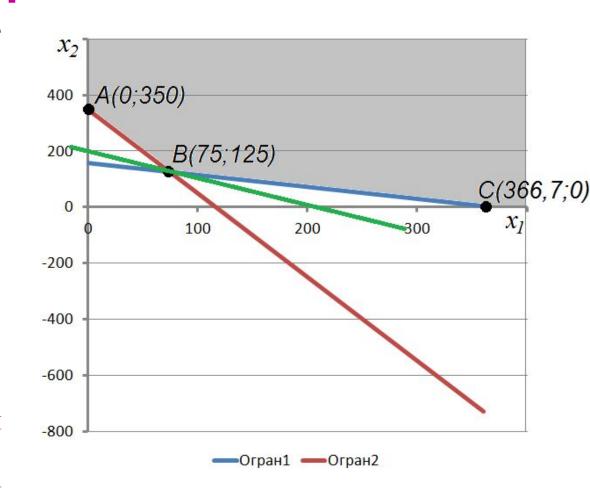
Задача 1: Результат графического решения

В первом режиме следует ежедневно перерабатывать 75 тонн нефти.

Во втором режиме – 125 тонн.

Минимальный ежедневный расход нефти – 75+125 = 200 т.

4. На сколько тонн увеличится ежедневный минимальный расход нефти, если потребуется производить в день 80 т светлых нефтепродуктов?



Чтобы ответить, надо вновь строить график и решать систему уравнений

Задача 2: Постановка

Предприятие располагает ресурсами сырья и рабочей силы, необходимыми для производства двух видов продукции. Затраты ресурсов на изготовление одной тонны каждого продукта, прибыль, получаемая предприятием от реализации тонны продукта, а также запасы ресурсов указаны в следующей таблице:

	Расход ресурсов		Запас
	на продукт 1	на продукт 2	pecypc a
Сырьё, т	3	5	120
Трудозатраты, ч	20	12	400
Прибыль на единицу продукта, тыс. руб / т	30	35	

- 1. Сколько продукта 1 следует производить для того, чтобы обеспечить максимальную прибыль?
- 2. Сколько продукта 2 следует производить для того, чтобы обеспечить максимальную прибыль?
 - 3. Какова максимальная прибыль?

Задача 2: Формализация условий

	Расход ресурсов		Запас
	на продукт 1	на продукт 2	ресурса
Сырьё, т	3	5	120
Трудозатраты, ч	20	12	400
Прибыль на единицу продукта, тыс. руб / т	30	35	

Пусть

 x_1 – объём выпуска 1 продукта, т;

 x_2 – объём выпуска 2 продукта, т,

Тогда:

суммарная прибыль $30 \cdot x_1 + 35 \cdot x_2 \rightarrow \max$

Целевая функция

$$\begin{vmatrix} 3 \cdot x_1 + 5 \cdot x_2 \le 120 \\ 20 \cdot x_1 + 12 \cdot x_2 \le 400 \\ x_1 \ge 0, x_2 \ge 0 \end{vmatrix}$$

Ограничения

Задача 2: Графическое решение

$$30 \cdot x_{1} + 35 \cdot x_{2} \to \max$$

$$3 \cdot x_{1} + 5 \cdot x_{2} \le 120$$

$$20 \cdot x_{1} + 12 \cdot x_{2} \le 400$$

$$x_{1} \ge 0, x_{2} \ge 0$$

Решение:

$$x_1 = 8,75 \text{ T}$$

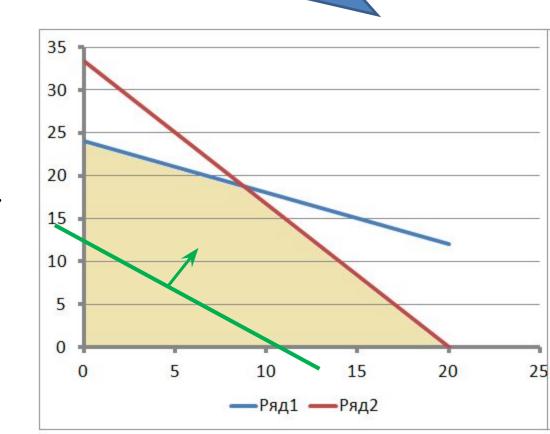
 $x_2 = 18,75 \text{ T}$

Суммарная прибыль =

968,75 тыс. руб.

Целевая функция

Множество **допустимых решений**



Общая постановка задачи линейной оптимизации

Целевая функция (ЦФ)

$$L(X) = c_1x_1 + c_2x_2 + ... + c_nx_n \rightarrow max (min),$$

при ограничениях

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le (\ge, =)b_1, \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le (\ge, =)b_2, \end{vmatrix}$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le (\ge, =)b_m$$

$$x_1, x_2, ... x_k \ge 0 (k \le n)$$

Основные понятия

Допустимое решение — это совокупность чисел (план) $\mathbf{X} = (\mathbf{x}_1, \ \mathbf{x}_2, ..., \ \mathbf{x}_n)$, удовлетворяющих ограничениям задачи.

Оптимальное решение — это план, при котором **ЦФ** принимает свое **максимальное** (**минимальное**) значение.

При описании реальной ситуации с помощью линейной модели следует проверять наличие у модели таких свойств, как пропорциональность и аддитивность.

Основные понятия

Пропорциональность означает, что вклад каждой переменной в ЦФ и общий объем потребления ссоответствующих ресурсов должен быть *прямо пропорционален величине этой переменной*.

Например, если, продавая j-й товар в общем случае по цене 100 рублей, фирма будет делать скидку при определенном уровне закупки до уровня цены 95 рублей, то будет отсутствовать прямая пропорциональность между доходом фирмы и величиной переменной х_j. Т.е. в разных ситуациях одна единица j-го товара будет приносить разный доход.

Аддитивность означает, что ЦФ и ограничения должны представлять собой сумму вкладов от различных переменных.

Примером нарушения аддитивности служит ситуация, когда увеличение сбыта одного из конкурирующих видов продукции, производимых одной фирмой, влияет на объем реализации другого.

Каноническая постановка ЗЛП

Целевая функция

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
,

Ограничения

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$|x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0$$