РАЗМЕН ЭНЕРГИИ ВОЗБУЖДЕННОГО СОСТОЯНИЯ

ХАРАКТЕРИСТИКИ ЭЛЕКТРОННО-ВОЗБУЖДЕННЫХ СОСТОЯНИЙ

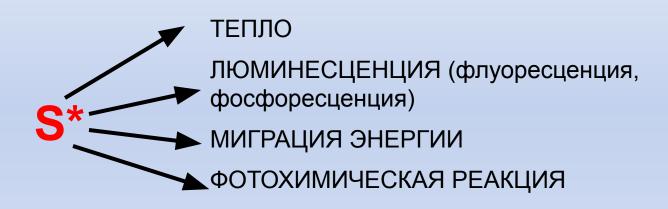
□ОПРЕДЕЛЕННАЯ ЭНЕРГИЯ

□ВРЕМЯ ЖИЗНИ

□СТРУКТУРНЫЕ СВОЙСТВА

ПОЛНАЯ ЭНЕРГИЯ МОЛЕКУЛЫ

$$E = E_{\rm SM} + E_{\rm KOM} + E_{\rm BP}$$

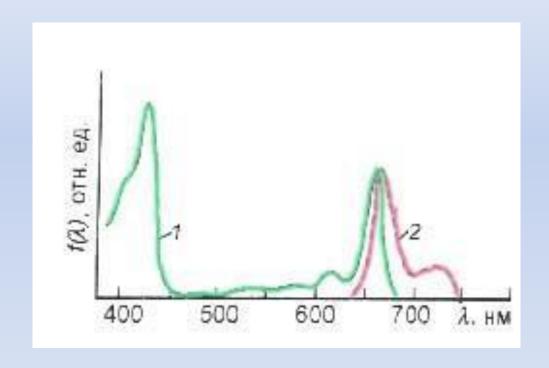

ПРИ ПОГЛОЩЕНИИ КВАНТА СВЕТА МОЛЕКУЛОЙ ПРОИСХОДИТ ПЕРЕХОД ЭЛЕКТРОНОВ С ОСНОВНОГО

СИНГЛЕТНОГО S_{o} УРОВНЯ НА ВОЗБУЖДЕННЫЕ УРОВНИ S^{*}

ВОЗБУЖДЕННОЕ СОСТОЯНИЕ С ТОЧКИ ЗРЕНИЯ ТЕРМОДИНАМИКИ – НЕРАВНОВЕСНОЕ СОСТОЯНИЕ.

ИЗБЫТОЧНАЯ ЭНЕРГИЯ ДОЛЖНА РАСТРАТИТЬСЯ НА РАЗЛИЧНЫЕ ПРОЦЕССЫ.

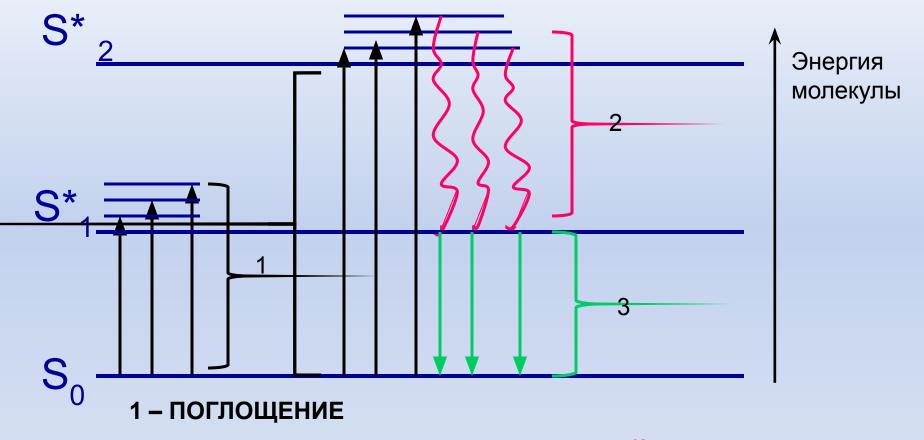
РАЗМЕН ЭНЕРГИИ ВОЗБУЖДЕННОГО СОСТОЯНИЯ



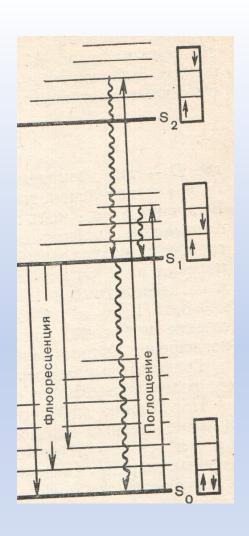
ЛЮМИНЕСЦЕНЦИЯ: ХАРАКТЕРИСТИКИ И ЗАКОНЫ

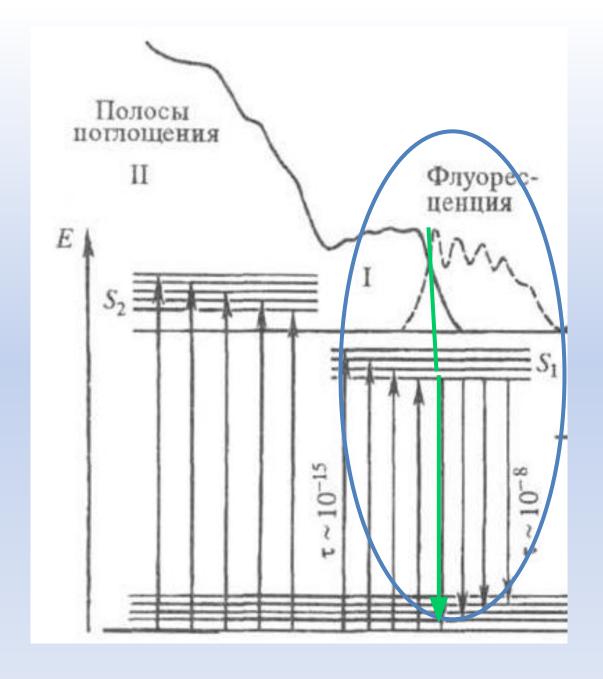
ХАРАКТЕРИСТИКИ ФЛУОРЕСЦЕНЦИИ

Спектр флуоресценции — зависимость интенсивности флуоресценции от длины волны испускаемого света


1 – спектр поглощения; 2 – спектр флуоресценции

Спектр возбуждения флуоресценции — зависимость интенсивности флуоресценции от длины волны возбуждающего света


Квантовый выход флуоресценции — отношение количества испускаемых квантов к количеству поглощенных.


При возбуждении молекул линейно поляризованным светом наблюдается частичная поляризация флуоресценции. В этом случае измеряют *степень* поляризации флуоресценции

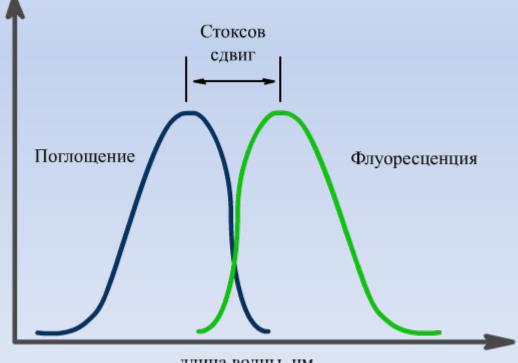
ЭЛЕКТРОННЫЕ ПЕРЕХОДЫ ПРИ ФЛУОРЕСЦЕНЦИИ

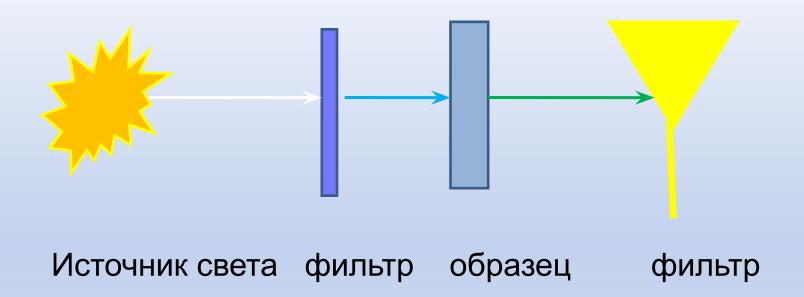
- $2 ВНУТРЕННЯЯ КОНВЕРСИЯ (время <math>10^{-13} c$)
- 3Φ ЛУОРЕСЦЕНЦИЯ (время $10^{-9} 10^{-8}$ c)

ЗАКОНЫ ФЛУОРЕСЦЕНЦИИ

закон СТОКСА

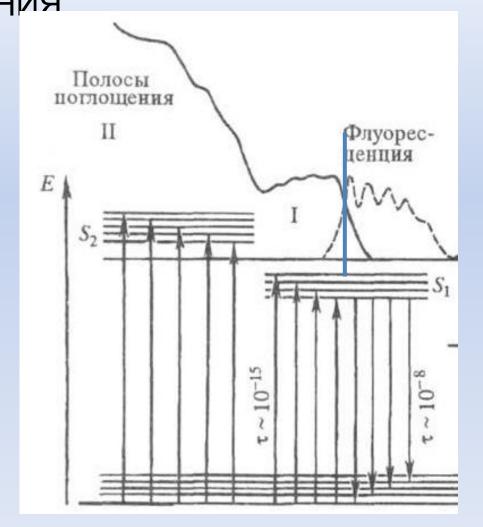
правило ЛЕВШИНА

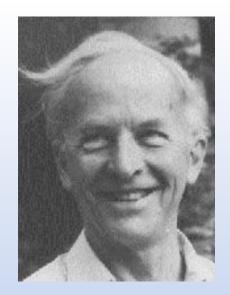

правило КАША


закон ВАВИЛОВА

Сэр Джорж Габриэль **СТОКС** 1819 - 1903

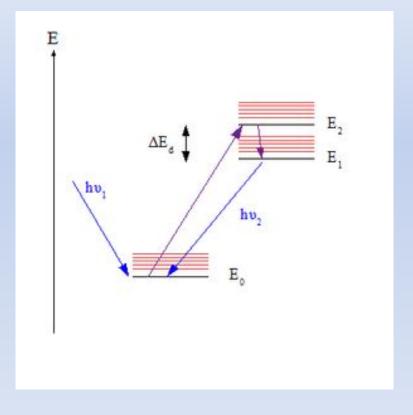
ЗАКОН СТОКСА: СПЕКТР ФЛУОРЕСЦЕНЦИИ СДВИНУТ В ДЛИННОВОЛНОВУЮ ОБЛАСТЬ ОТНОСИТЕЛЬНО СПЕКТРА ПОГЛОЩЕНИЯ





В.Л.Левшин (1896 -1969)

ПРАВИЛО ЛЕВШИНА: СПЕКТР
ФЛУОРЕСЦЕНЦИИ СИММЕТРИЧЕН
ДЛИННОВОЛНОВОЙ ОБЛАСТИ СПЕКТРА
ПОГЛОЩЕНИЯ



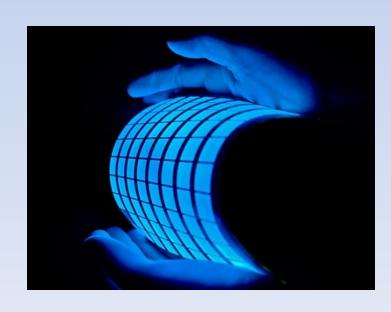
правило КАША

Предложено химиком Майклом Каша (Michael Kasha) в 1950.

Майкл КАША р.1920

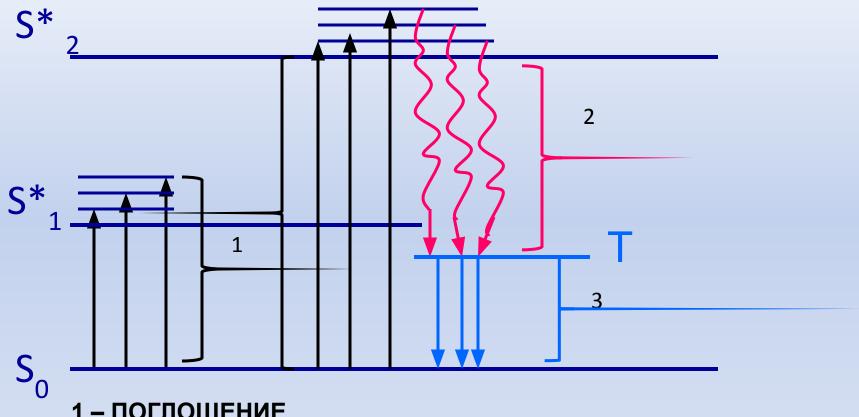
Правило Каша: при облучении молекула будет излучать только за счет низшего по энергии возбужденного состояния.

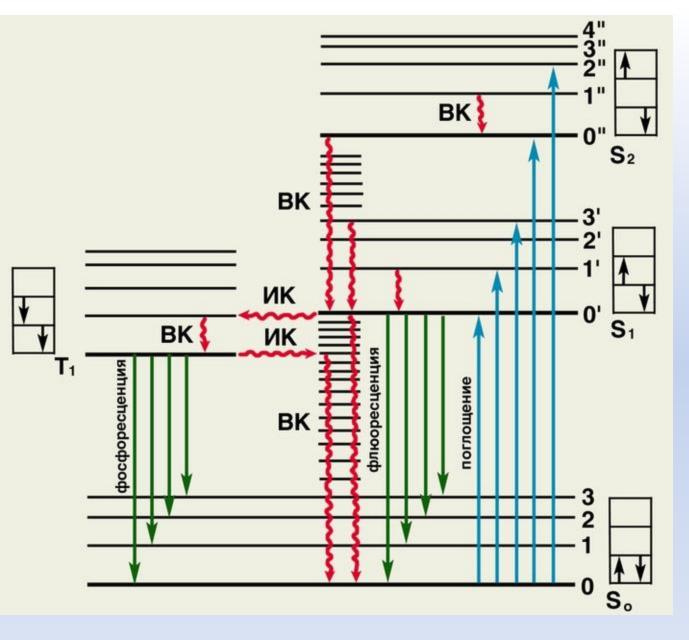
С.И.Вавилов


правило ВАВИЛОВА: НЕЗАВИСИМОСТЬ КВАНТОВОГО

ВЫХОДА Ф ФЛУОРЕСЦЕНЦИИ ОТ ДЛИНЫ ВОЛНЫ ВОЗБУЖДАЮЩЕГО СВЕТА

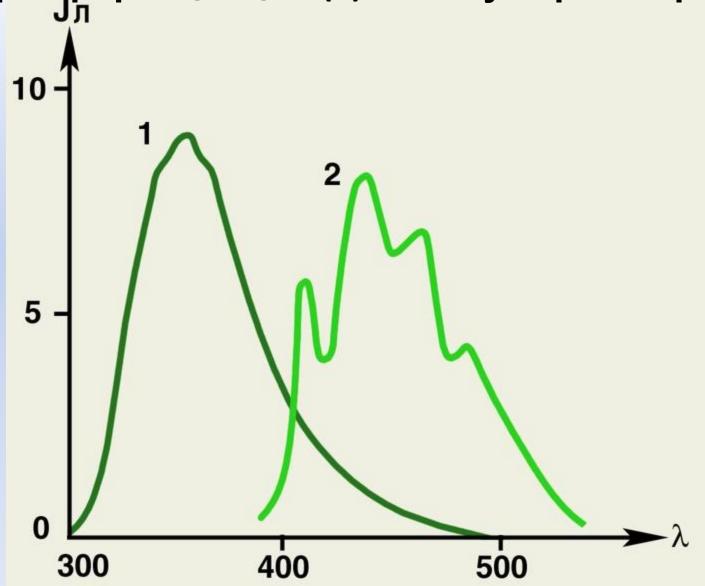
$$\phi=rac{n_{ucn}}{n_{norn}}$$


ФОСФОРЕСЦЕНЦИЯ



Фосфоресцентный порошок при облучении видимым светом (1), ультрафиолетовым светом (2) и в полной темноте (3).

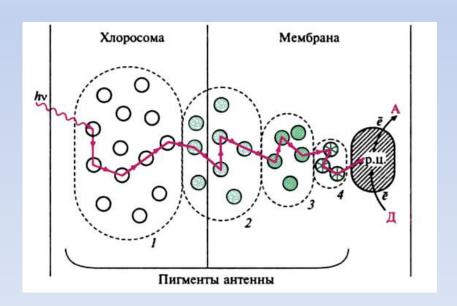
ЭЛЕКТРОННЫЕ ПЕРЕХОДЫ ПРИ ФОСФОРЕСЦЕНЦИИ


- 1 ПОГЛОЩЕНИЕ
- 2 ИНТЕРКОМБИНАЦИОННАЯ КОНВЕРСИЯ
- 3 ФОСФОРЕСЦЕНЦИЯ

ИК – интеркомбинационна я конверсия ВК – внутренняя конверсия

Спектры флуоресценции (1) и фосфоресценции (2) молекул триптофана

МЕТОДЫ ОБНАРУЖЕНИЯ ТРИПЛЕТНЫХ УРОВНЕЙ


ПЭПР

□импульсный фотолиз

ПТЕРМОЛЮМИНЕСЦЕНЦИЯ

ПИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ

МИГРАЦИЯ ЭНЕРГИИ

МИГРАЦИЯ ЭНЕРГИИ - это

БЕЗИЗЛУЧАТЕЛЬНЫЙ ПЕРЕНОС ЭНЕРГИИ

НА РАССТОЯНИЯ, ПРЕВЫШАЮЩИЕ МЕЖАТОМНЫЕ,

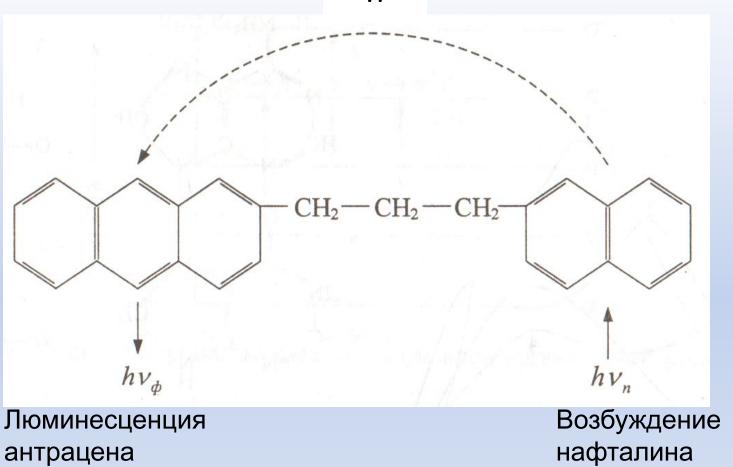
БЕЗ СОУДАРЕНИЯ ДОНОРА И АКЦЕПТОРА

$$D+hv \rightarrow D^* + A \rightarrow D + A^*$$

МИГРАЦИЯ ЭНЕРГИИ В БИОСИСТЕМАХ

МЕЖМОЛЕКУЛЯРНАЯ

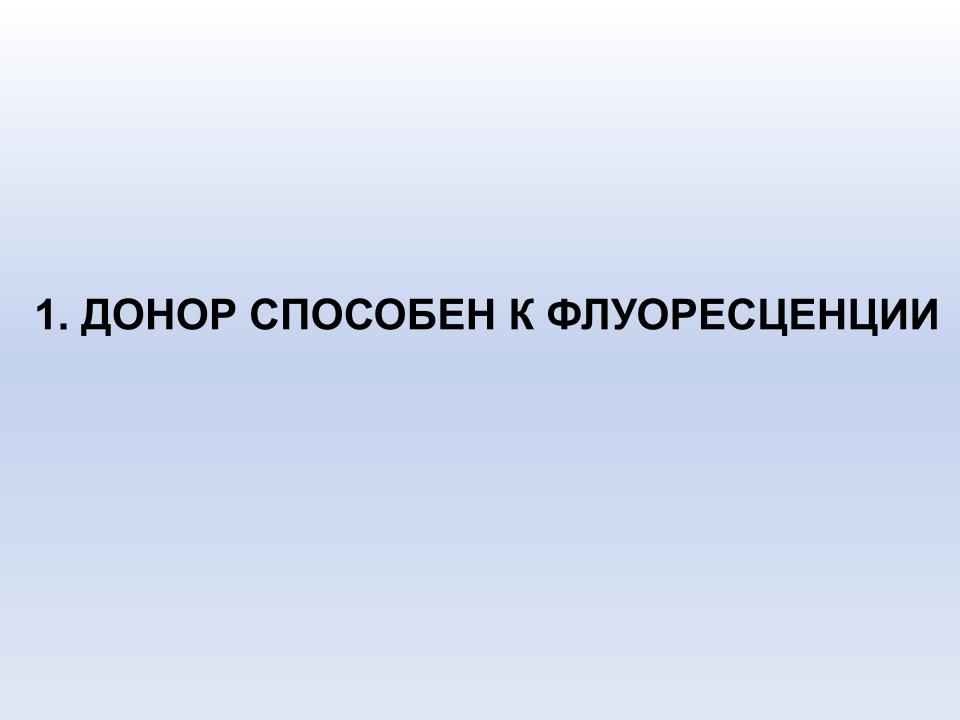
ФОТОСИНТЕЗ:


Chl + hv
$$\rightarrow$$
 Chl*
Chl* +P \rightarrow Chl +P*

ВНУТРИМОЛЕКУЛЯРНАЯ

М.Э. МЕЖДУ АЗОТИСТЫМИ ОСНОВАНИЯМИ В ДНК ПОСЛЕ ПОГЛОЩЕНИЯ КВАНТА УФ.

М.Э. внутри **НАД** от АДЕНИЛОВОЙ ГРУППЫ К НИКОТИНОВОЙ

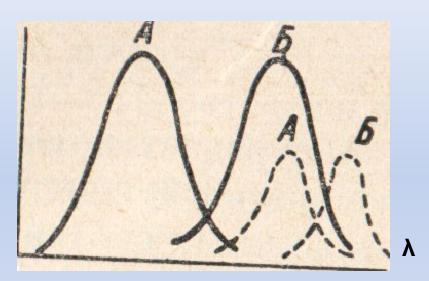

Гибридная молекула антрацена и нафталина: внутримолекулярная миграция энергии

МЕХАНИЗМЫ МИГРАЦИИ ЭНЕРГИИ

ИНДУКТИВНО-РЕЗОНАНСНАЯ МИГРАЦИЯ ЭНЕРГИИ

УСЛОВИЯ ИНДУКТИВНО-РЕЗОНАНСНОЙ МИГРАЦИИ

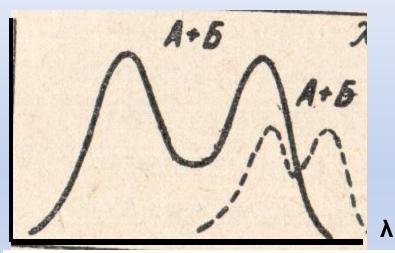
(Правила Ферстера)



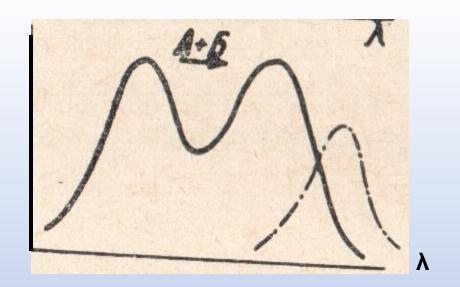
2. СПЕКТР ФЛУОРЕСЦЕНЦИИ ДОНОРА ДОЛЖЕН ПЕРЕКРЫВАТЬСЯ СО СПЕКТРОМ ПОГЛОЩЕНИЯ АКЦЕПТОРА

3. ДОНОР И АКЦЕПТОР РАСПОЛОЖЕНЫ НА ОПРЕДЕЛЕННОМ РАССТОЯНИИ (2 – 10 нм)

ЭКСПЕРИМЕНТАЛЬНОЕ ОБНАРУЖЕНИЕ МИГРАЦИИ ЭНЕРГИИ:


СЕНСИБИЛИЗИРОВАННАЯ ЛЮМИНЕСЦЕНЦИЯ

СПЕКТРЫ ПОГЛОЩЕНИЯ


И ЛЮМИНЕСЦЕНЦИИ

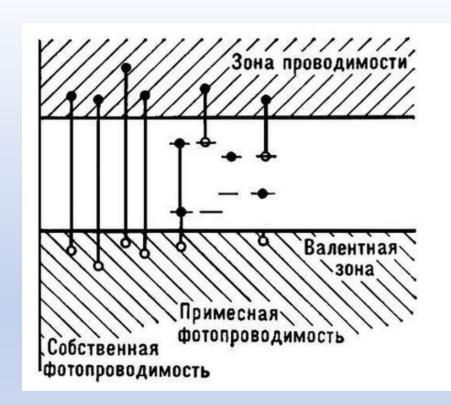
индивидуальных веществ **А** и **Б**

СПЕКТРЫ ПОГЛОЩЕНИЯ И ЛЮМИНЕСЦЕНЦИИ

СМЕСИ ВЕЩЕСТВ **А** И **Б** В ОТСУТСТВИИ МИГРАЦИИ ЭНЕРГИИ

спектры поглощения и люминесценции системы A+B при полной миграции энергии от A к B (флуоресцирует только вещество B)

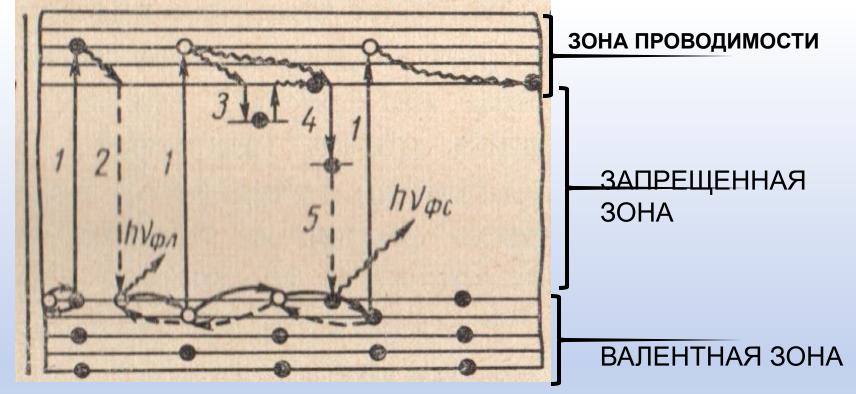
ДРУГИМ ДОКАЗАТЕЛЬСТВОМ МИГРАЦИИ ЭНЕРГИИ СЛУЖИТ СЕНСИБИЛИЗИРОВАННАЯ ФОТОХИМИЧЕСКАЯ РЕАКЦИЯ

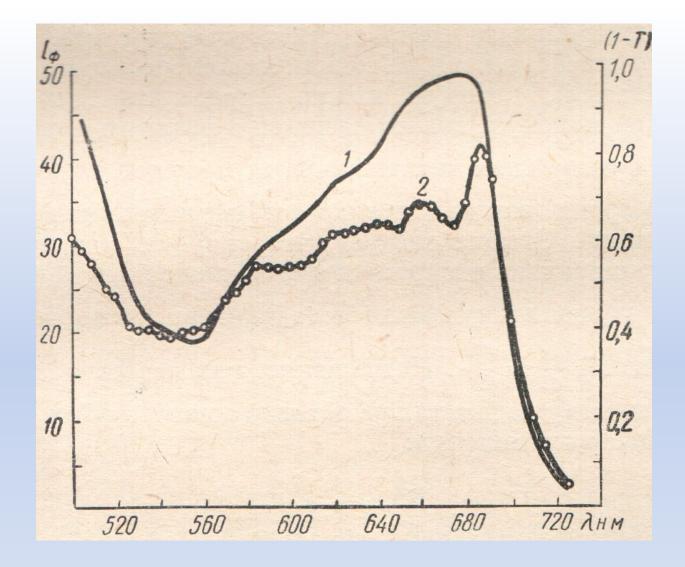

$$A + hv \rightarrow A^*$$
 $A^* + B \rightarrow A + B^*$ (миграция)
 $B^* \rightarrow C$ (фотохимическая реакция)

ОБМЕННО-РЕЗОНАНСНАЯ МИГРАЦИЯ ЭНЕРГИИ

ПЕРЕНОС ЭНЕРГИИ ОСУЩЕСТВЛЯЕТСЯ С Т-УРОВНЯ ДОНОРА НА Т-УРОВЕНЬ АКЦЕПТОРА ПРИ ПРЯМОМ ПЕРЕКРЫВАНИИ ТРИПЛЕТНЫХ УРОВНЕЙ ЗА СЧЕТ ЭЛЕКТРОСТАТИЧЕСКИХ ВЗАИМОДЕЙСТВИЙ ЭЛЕКТРОНОВ ДОНОРА И АКЦЕПТОРА.

ОБНАРУЖЕНИЕ: *СЕНСИБИЛИЗИРОВАННАЯ ФОСФОРЕСЦЕНЦИЯ*


ПОЛУПРОВОДНИКОВАЯ МИГРАЦИЯ ЭНЕРГИИ


Примесная проводимость:

электроны из заполненной зоны забрасываются на свободные примесные уровни — возрастает число дырок (дырочная примесная Ф.); электроны забрасываются с примесных уровней в зону проводимости (электронная примесная Ф.)

фотоны «вырывают» электроны из валентной зоны и «забрасывают» их в зону проводимости, при этом одновременно возрастает число электронов проводимости и дырок

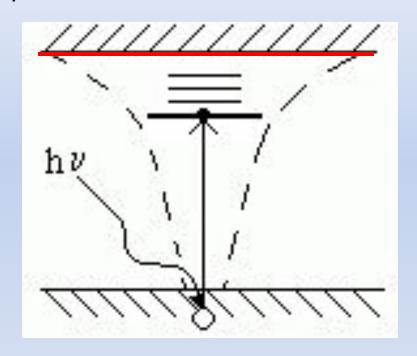
- 1 переход электрона из валентной зоны в зону проводимости
- 2 межзонная рекомбинация (переход выделенной энергии в излучение или тепло)
- 3 захват электрона ловушкой и возвращение его в зону проводимости
- 4 безизлучательный переход на более глубокий примесный уровень
- 5 рекомбинация с примесного уровня (сенсибилизированная люминесценция)

Сопоставление спектра поглощения (1) и спектра фотопроводимости пленки хлоропластов

ЭКСИТОННАЯ МИГРАЦИЯ ЭНЕРГИИ

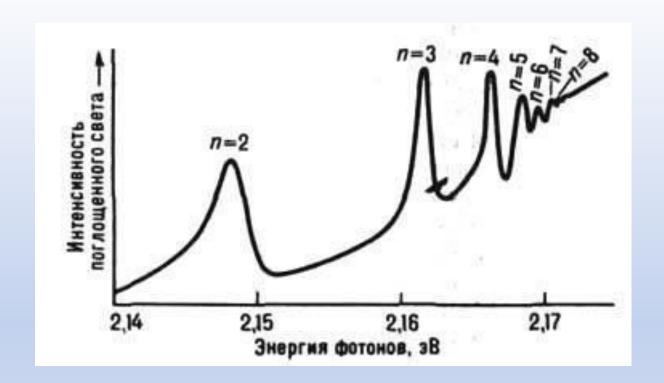
ЭКСИТОН (от лат. excito - возбуждать)- мигрирующее в кристалле электронное возбуждение, не связанное с переносом электрического заряда и массы.

Представление об **ЭКСИТОНЕ** введено в 1931 Я. И. Френкелем

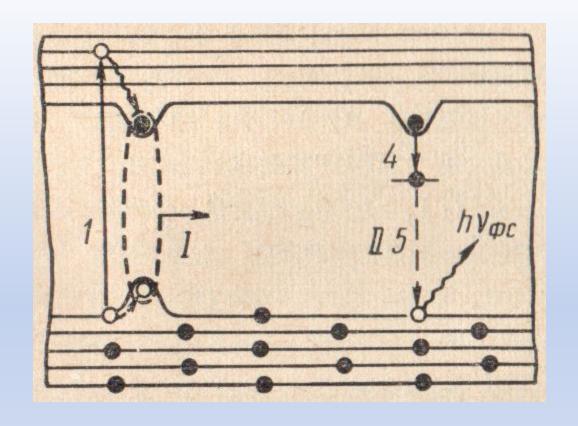


Яков Ильич Френкель 1894— 1952

В 1937-38 Дж. Ванье (G. Wannier) и Н. Мотт (N. Mott) ввели представление об ЭКСИТОНЕ как о перемещающихся по кристаллу связанных состояниях электрона и дырки, которые могут находиться на различных узлах кристаллической решётки (Э. большого радиуса),


Экситон Френкеля можно представить как предельный случай, когда связанные электрон и дырка сидят на одном и том же узле (Э. малого радиуса).

ЭКСИТОН – ЧАСТИЦА, ВОЗНИКАЮЩАЯ ВСЛЕДСТВИЕ КУЛОНОВСКОГО ВЗАИМОДЕЙСТВИЯ МЕЖДУ ЭЛЕКТРОНОМ И ДЫРКОЙ


Энергетические уровни возбуждённого электрона, входящего в состав экситона и находящегося в центральном электростатическом поле дырки, лежат несколько ниже края зоны проводимости.

Энергия образования экситона меньше ширины запрещённой зоны.

Спектр поглощения кристаллической закиси меди

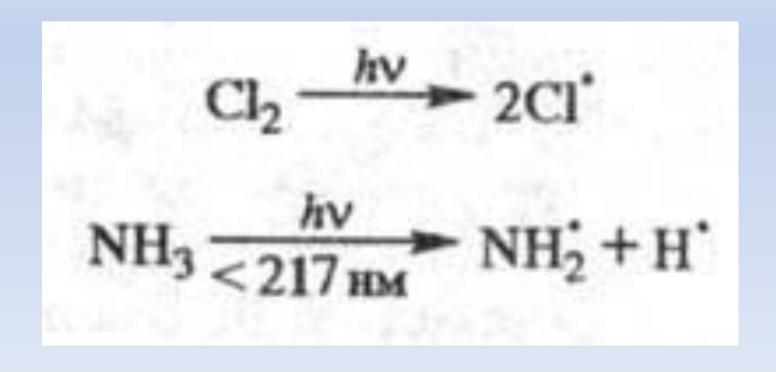
Пики соответствуют энергетическим уровням экситонов, возникающих при поглощении фотонов резонансной энергии полупроводников

Возникновение экситона (I) и его разрушение на примесном уровне

ФОТОХИМИЧЕСКИЕ РЕАКЦИИ

ФОТОХИМИЧЕСКИЕ РЕАКЦИИ —

реакции, которые происходят только под действием светового излучения.


Для возбуждения таких реакций обычно используют видимое или УФ излучение (длина волны λ от 200 до 700 нм).

При поглощении света происходит первичная реакция (фотохимическая активация) и молекула переходит в возбужденное электронное состояние:

$$A + hv \rightarrow A^*$$
.

Возбужденная молекула может испытывать последующие превращения (*вторичные реакции*):

Фотодиссоциация- распад молекулы по какой-либо связи на радикалы, атомы или ионы

Фотоизомеризация

Широко распространены процессы цис-транси транс-цис-фотоизомеризации непредельных соединений.

Окислительно-восстановительные фотохимические реакции. В основе большинства из них лежит фотоперенос электрона. В основе большинства из них лежит фотоперенос электрона. Образующиеся в первичной стадии ионрадикалы вступают в дальнейшие превращения, давая продукты окисления. ACHARA FARI HIMHATRA MA

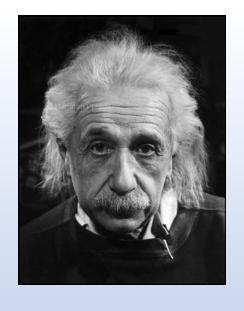
RH — RH — RH2 — RH3 (или RH2RH2)
первичнои стадии ион-радикалы вступают
в дальнейшие превращения, давая
продукты окисления или восстановления.

Характеристика фотохимической реакции - *квантовый выход* **ф**.

Квантовый выход фотохимической реакции равен отношению числа прореагировавших молекул к числу поглощенных фотонов.

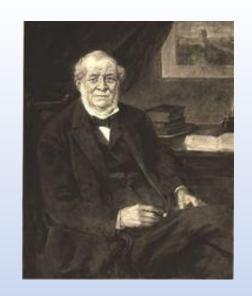
Если каждый поглощенный фотон вызывает фотохимический акт, то $\phi = 1$.

В действительности ϕ <1 за счет вторичных процессов.


ЗАКОНЫ ФОТОХИМИИ

Теодор фон ГРОТБУС 1822

закон ГРОТГУСА


ФОТОХИМИЧЕСКОЕ ДЕЙСТВИЕ ОКАЗЫВАЕТ ТОЛЬКО ПОГЛОЩЕННЫЙ СВЕТ.

закон ЭЙНШТЕЙНА

(ЗАКОН ЭКВИВАЛЕНТНОСТИ):

АЛЬБЕРТ ЭЙНШТЕЙН (1879-1955) КАЖДЫЙ ПОГЛОЩЕННЫЙ КВАНТ СВЕТА **hV** ВЫЗЫВАЕТ ИЗМЕНЕНИЕ ОДНОЙ МОЛЕКУЛЫ

закон БУНЗЕНА – РОСКО:

количество фотопродукта зависит от дозы облучения (lt)

Роберт Вильгельм БУНЗЕН 16-

1811 – 1899

Концентрация продуктов фотохимической реакции пропорциональна общему количеству энергии излучения, поглощённого светочувствительным веществом. Это количество равно произведению мощности излучения на время его действия. Иными словами, увеличение времени и увеличение мощности излучения взаимозаместимы

Кинетика фотохимических реакций описывается обычными дифференциальными уравнениями, выражающими закон действующих масс.

Единственное **ОТЛИЧИЕ** от обычных реакций в том, что скорость фотохимических процессов определяется *интенсивностью* поглощенного света.

СКОРОСТЬ ФОТОХИМИЧЕСКИХ РЕАКЦИЙ

<u>Скорость</u> фотохимических реакций пропорциональна количеству квантов, поглощенных в единицу времени:

$$\frac{dc}{\approx} \frac{dN}{dt}$$

Не все поглощенные кванты вызывают фотохимическую реакцию, поэтому следует

учесть <u>квантовый выход реакции – ф</u> .

$$\frac{dc}{dt} = \varphi \frac{dN}{dt}$$

Скорость поглощения квантов зависит от

- □интенсивности падающего света (I),
- □концентрации вещества (с), участвующего в поглощении.

Коэффициент пропорциональности **S** - **<u>эффективное</u> по перечное сечение молекулы** - площадь (S), при попадании в которую, квант поглощается:

$$\frac{dN}{dt} = SIc$$

С учетом квантового выхода реакции, уравнение примет вид:

$$\frac{dc}{dt} = -\varphi SIc$$

Решая это дифференциальное уравнения имеем

$$c = c_0 e^{-\varphi SIt}$$

Часто вводят величину **О** - поперечное сечение фотореакции,

Площадь, при попадании в которую квант не только поглощается, но и вызывает фотохимическую реакцию:

$$\sigma = \phi S$$

Тогда уравнение примет вид:

$$c = c_0 e^{-\sigma lt}$$

Таким образом, концентрация реагирующего вещества убывает по экспоненциальному закону в зависимости от дозы облучения **!t.**

ФЛУОРЕСЦЕНТНАЯ СПЕКТРОСКОПИЯ БЕЛКОВ

Используется для изучения конформационных свойств белка в растворе.

Белки содержат три собственных флуоресцирующих хромофора – триптофан, тирозин и фенилаланин.

Наиболее интенсивную ФЛ дают триптофан и тирозин.

Флуоресценцию изучают на спектрофлуориметрах

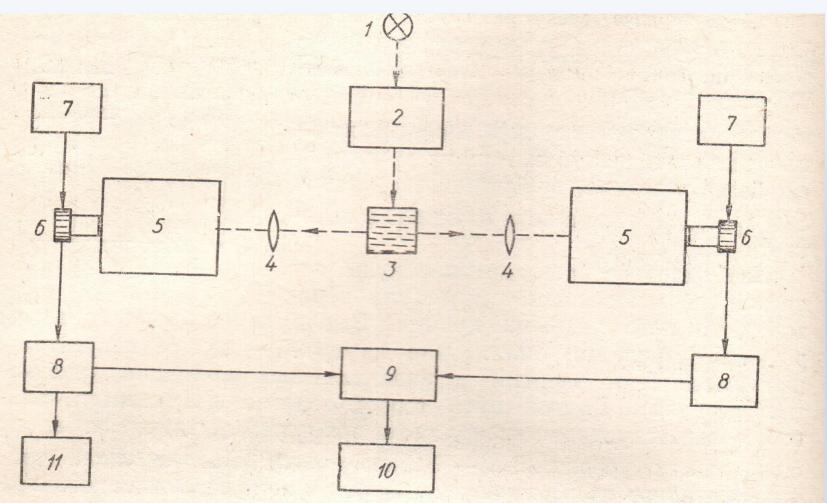


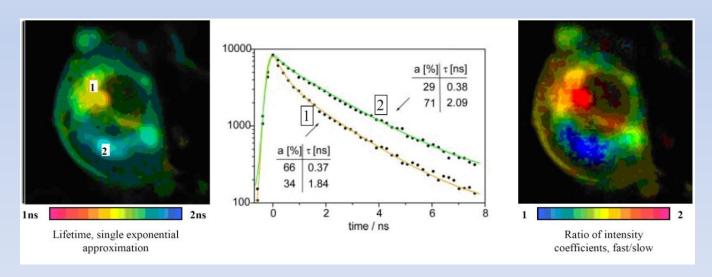
Рис. 34. Блок-схема спектрофлуориметра:

1 — источник УФ света; 2 — монохроматор возбуждения; 3 — кювета с исследуемым веществом; 4 — фокусирующие линзы; 5 — монохроматоры флуоресценции; 6 — ФЭУ; 7 — высоковольтные стабилизаторы напряжения; 8 — усилители; 9 — частотомер; 10 — цифропечатающее устройство; 11 — самописец

Наиболее чувствительной к изменению конформации белка является ФЛ триптофановых остатков. Положение максимума спектра ФЛ триптофановых остатков зависит от свойств микроокружения.

Триптофановые остатки находятся на поверхности глобулы в полярном окружении, или в денатурированном белке: их спектр подобен спектру триптофана в воде.

Спектр остатков триптофана внутри глобулы смещен в более коротковолновую область, а его максимум варьирует в широких пределах (от 442 до 320 нм).


СДВИГ СПЕКТРА 2 В КОРОТКОВОЛНОВУЮ ОБЛАСТЬ СВИДЕТЕЛЬСТВУЕТ О ВЫСОКОГИДРОФОБНОМ МИКРООКРУЖЕНИИ ТРИПТОФАНОВЫХ ОСТАТКОВ В МОЛЕКУЛЕ АЛЬДОЛАЗЫ

Измеряя спектры триптофановой ФЛ белка, можно оценить конформационные перестройки в белке при действии факторов среды или в процессе функционирования белка (ферментный катализ, транспорт ионов и др.)

Кроме изучения собственной ФЛ широко используют флуоресцентные зонды.

ПРИМЕНЕНИЕ ФЛУОРЕСЦЕНТНЫХ ЗОНДОВ

- □оценка микровязкости клеточных мембран
- □ вращательная диффузия белков
- □ реакции ассоциации (связывания) соединений с белками, ДНК, мембранами
- □определение рН и концентрации Na+, Mg2+, Ca2+ с помощью подходящих флуоресцентных зондов

Двумерное картирование биологической клетки по эффективности флуоресцентного переноса энергии между двумя флуоресцентными метками, введенными в разные белковые субъединицы кальциевого канала