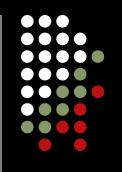
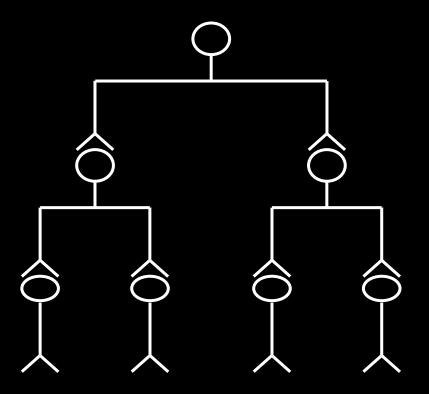

Физиология ЦНС

- 1. Нервные сети,
- 2. Рефлекс,
- 3. Свойства нервных центров,
- 4. Торможение в ЦНС
- 5. Принципы координированной деятельности ЦНС

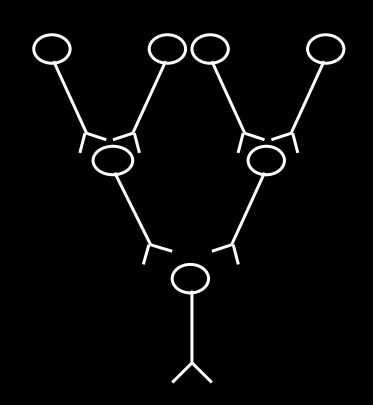
Виды нервных сетей

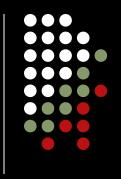


1. Простая нервная цепочка

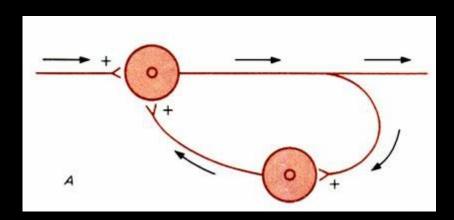


Виды нервных сетей

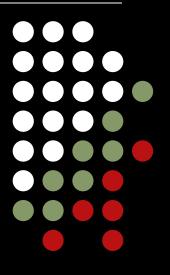

2. Иерархические сети

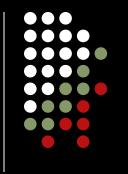

дивергентные

конвергентные



Виды нервных сетей


3. Локальные сети (Леренто де Но).

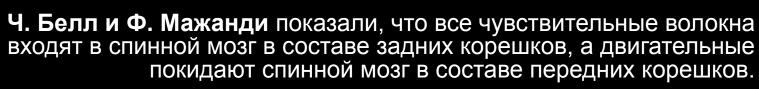

Реверберация возбуждения ограничивается тормозным сигналом или попаданием в фазу рефрактерности.

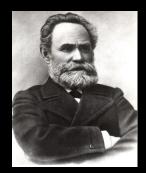
В основе регуляции функций систем организма лежит

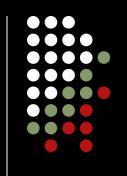
РЕФЛЕКС

Рефлекс (reflexus – отражение) – это специализированная ответная реакция организма на воздействие факторов внешней и внутренней среды, протекающая при участии ЦНС

История рефлекса


Представление о рефлексе было впервые выдвинуто в 17 в. французским философом **Р. Декартом** (нервные нити, идущие к мозгу, натягиваются и открывают клапаны каналов, по которым «животные духи» идут из мозга к мышцам, вызывая их сокращение).


В 18 в. исследованиями физиологов **А. Галлера** и **И. Прохазки** учение Декарта распространено на деятельность внутренних органов. Впервые термин «рефлекс» ввел И. Прохазка



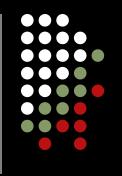
В 19 в. **И. М. Сеченов** обосновал представление об универсальном значении рефлекторного принципа в деятельности спинного и головного мозга.

В начале 20 в. И.П. Павлов открыл существование условных рефлексов

Принципы функционирования ЦНС:

- 1. Принцип детерминизма (причинноследственной связи),
- 2. Принцип анализа и синтеза,
- 3. Принцип структурности (в основе любой функции гистологическая структура).

Рефлекторная дуга

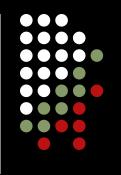

- это комплекс специфически организованных нервных клеток, взаимодействие которых необходимо для осуществления рефлекторного акта.

Звенья рефлекторной дуги:

- рецептор (восприятие стимула и кодирование его характеристик),
- 2. <u>афферент (кодирование параметров стимула и передача</u> его в центральное звено),
- з. <u>центральное звено</u> (анализ и синтез полученной информации),
- 4. <u>эфферент (передача команды к рабочему органу)</u>,
- 5. <u>рабочий орган</u> (реализация ответной реакции на действие стимула)

Рефлекс проявляется только при сохранении целостности всех элементов рефлекторной дуги.

Рецепторы



Виды:

- 1. Интерорецепторы,
- 2. Экстерорецепторы,
- з. Проприорецепторы

Совокупность рецепторов, раздражение которых вызывает определенный рефлекс, называется рецептивным полем.

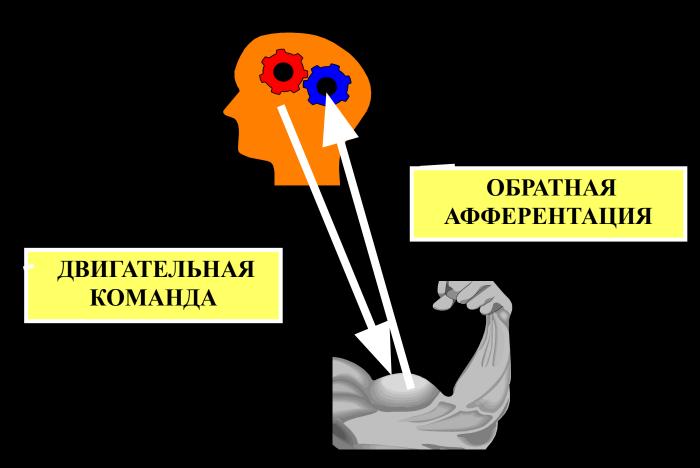
Время рефлекса

подразделяют на:

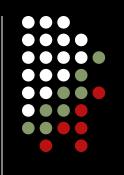
- 1. общее время рефлекса то время, которое проходит от момента раздражения до ответной реакции.
- 2. центральное время рефлекса составляет 80 % от общего времени и зависит от количества синапсов между нейронами в рефлекторной дуге.

Время рефлекса уменьшается при увеличении силы раздражителя

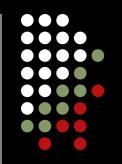
При этом возможно 2 варианта сокращения времени рефлекса:


- расширение рецептивного поля и пространственная суммация на центральном нейроне деполяризущих потенциалов от нескольких афферентов.
- усиление силы раздражения вызывает возрастание частоты импульсации в афферентных волокнах и временную суммацию и происходит гомосинаптическая модуляция.

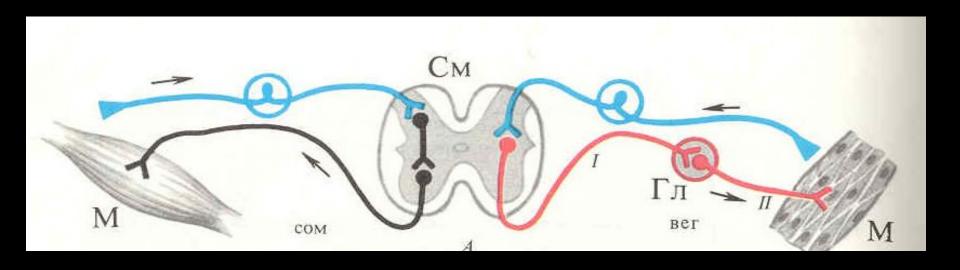
При сильном раздражении возможна иррадиация возбуждения и активация дополнительных рефлекторных дуг.


Рефлекторное кольцо

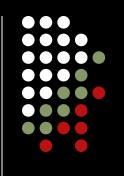
Рефлекторная реакция предполагает взаимодействие ЦНС с периферическими органами по принципу обратной связи для более точной координации и приспособления.



КЛАССИФИКАЦИЯ РЕФЛЕКСОВ:


- по Павлову: условные и безусловные;
- 2. по биологической значимости: ориентировочные, оборонительные, пищевые, половые;
- з. по рецептору: интерорецептивные, экстерорецептивные и проприорецептивные;
- 4. по рабочему органу: двигательные, секреторные, сосудодвигательные;
- 5. по уровню замыкания РД: спинальные, бульбарные, мезэнцефальные, диэнцефальные, корковые;
- 6. по строению РД: моносинаптические, дисинаптические, полисинаптические
- 7. по отделу ЦНС: соматические и вегетативные

Рефлекторная дуга соматического и вегетативного рефлекса



соматическая

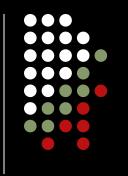
вегетативная

ВЗАИМОДЕЙСТВИЕ РЕФЛЕКСОВ

- Содружественные рефлексы (аллиириванные,) (мигание и слезоотделение, слюноотделение и глотание)
- Антагонистические (глотание и вдох, сгибание и разгибание)
- Цепные рефлексы (шагательный)

НЕРВНЫЕ ЦЕНТРЫ

Это физиологическая структурная единица ЦНС.

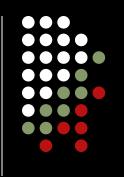

Существует 2 понятия НЦ:

Анатомическое понятие:

НЦ – это группа нейронов, расположенная в определенном отделе ЦНС и необходимая для осуществления рефлекса.

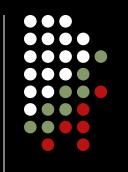
<u>Физиологическое понятие</u>:

НЦ – это совокупность нейронов, расположенных на различных этажах ЦНС и принимающих участие в регуляции определенной функции.

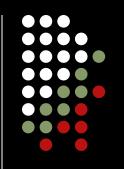


Для НЦ характерно существование жестких связей с рецептивными полями и рабочими органами. Они генетически запрограммированы, но в процессе онтогенеза эти связи становятся подвижными и способны существенно менять работу НЦ.

Чем выше находится НЦ в ЦНС тем более тонкую регуляцию функций он осуществляет.

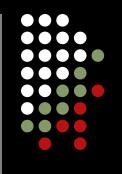

НЦ нижних отделов ЦНС находятся под коррегирующим влиянием вышележащих отделов.

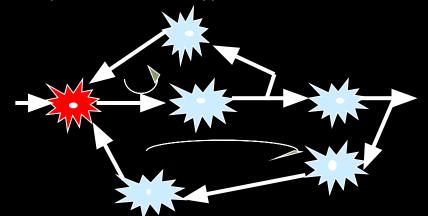
В нервном центре выделяют 3 отдела:


- Рабочий отдел отвечает за реализацию определенной функции (дыхание продолговатый мозг и мост)
- Регуляторный отдел отвечает за регуляцию работы рабочего (дыхание лобная кора) и зависит от его состояния
- Исполнительный отдел это двигательный центр, он получает команду от рабочего отдела и передает ее к рабочему органу (дыхание спинной мозг)

Выделяют нервные центры по функциям:

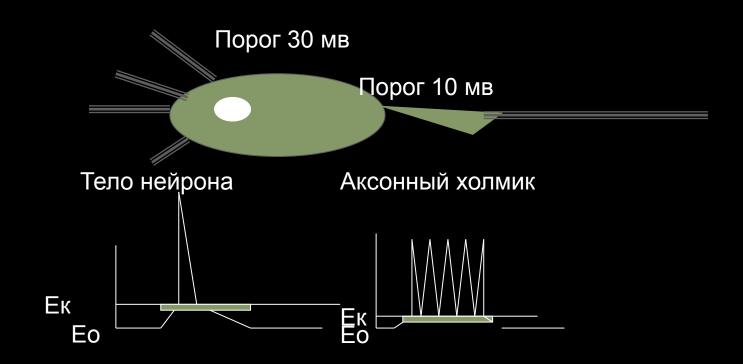
- 1. чувствительные (слуховой, зрительный, и т.п.)
- 2. вегетативные (сердечный, дыхательный, пищеварительный и т.п.)
- 3. двигательные
- 4. центры психических функций (речи, эмоций)


Нервные центры обладают рядом свойств и особенностей


Они зависят от:

- 1. свойств нейронов, входящих в НЦ,
- 2. их взаимосвязи между собой,
- з. от свойств синапсов внутри НЦ.

СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ



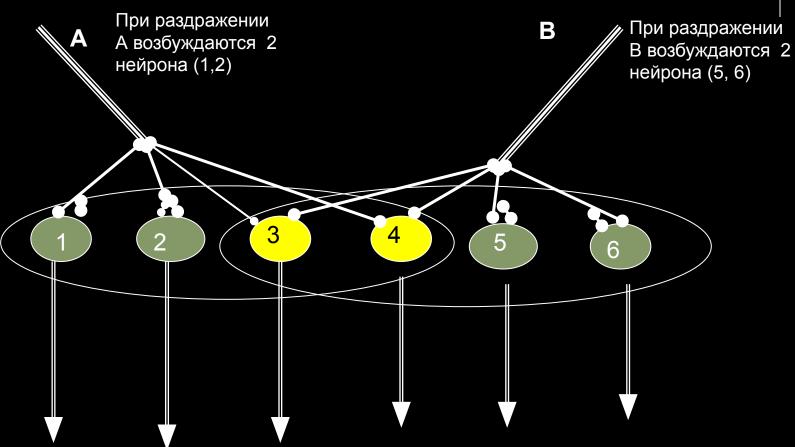
- одностороннее проведение возбуждения (химические синапсы),
- 2. задержка проведения возбуждения (химические синапсы),
- з. суммация (пространственная и временная),
- 4. <u>последействие или следовая активность</u> (продолжение реакции после прекращения действия раздражителя)
 - кратковременное последействие связано с особенностью синаптической передачи (медиатор не сразу прекращает действовать, а лишь через время (около 10 мс))
 - 2. длительное последействие связано с циркуляцией возбуждения по ловушкам Лоренто де Но

5. усвоение и трансформация ритма

- усвоение необходимо для организации взаимодействия между различными НЦ, в частности для организации ритмических движений у человека. Нейроны при этом работают с одним ритмом. Это повышает работоспособность отдельных рефлекторных дуг.
- 2. трансформация ритма может быть повышающей и понижающей, что связано с особенностями синапсов данного НЦ

6. фоновая активность обеспечивается:

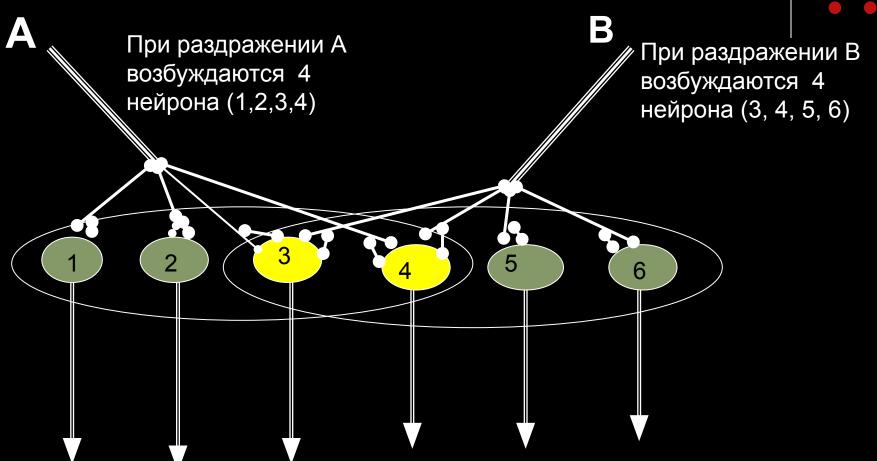
- поступлением импульсов от соседних НЦ (дивергенция, конвергенция)
- 2. суммацией миниатюрных потенциалов, возникающих за счет утечки медиатора
- 7. <u>тонус НЦ</u> необходим для обеспечения готовности к рефлекторной деятельности и возникает:
 - за счет спонтанной активности нейронов НЦ,
 - 2. **из-за постоянного поступления импульсации от** рецепторов
- 8. <u>утомление</u> в НЦ возникает из-за:
 - истощения медиатора,
 - 2. истощения энергетического материала,
 - з. снижения чувствительности рецепторов,
 - 4. метаболических сдвигов в нейронах.


9. <u>посттетаническая потенциация или проторение</u> <u>пути</u>

10. центральное облегчение и окклюзия

- 1. **облегчение** количество возбужденных нейронов при одновременном раздражении двух афферентных входов двух нервных центров с перекрывающимися подпороговыми зонами больше, чем арифметическая сумма возбужденных нейронов при их раздельном раздражении
- 2. **окклюзия -** количество возбужденных нейронов при одновременном раздражении двух афферентных входов двух нервных центров с перекрывающимися пороговыми зонами меньше, чем арифметическая сумма возбужденных нейронов при их раздельном раздражении.

Центральное облегчение



При раздражении A + B возбуждаются 6 нейронов (1, 2, 3, 4, 5, 6)

Центральная окклюзия

При раздражении А + В возбуждаются 6 нейронов (1, 2, 3, 4, 5, 6)

- пластичность это способность НЦ менять свое прямое функциональное назначение и расширят свои функциональные возможности.
- 12. <u>Чувствительность к О</u>₂ (необратимые последствия: кора 5-6 минут, ствол 15-20 минут, спинной мозг 30 минут) и химическим агентам:

Глюкоза – недостаток – расстройство ЦНС

Никотин, мускарин – блокируют возбуждающие синапсы

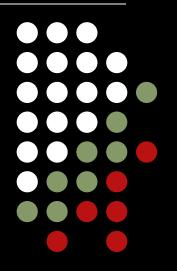
Стрихнин, столбнячный токсин – выключают тормозные синапсы, возбуждение вплоть до судорог

Апоморфин – на рвотный центр

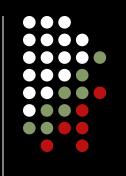
Побелин и цититон на дыхательный центр

Мескалин – на зрительные центры коры

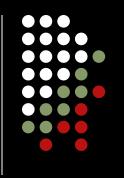
Кофеин и фенамин – психостимуляторы


Алкоголь – тормоз на все

Эфир, **хлороформ**, **закись азота** – тормоз на всё выше продолговатого мозга

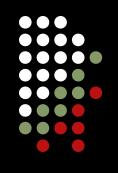

Барбитураты – торможение коры – снотворное

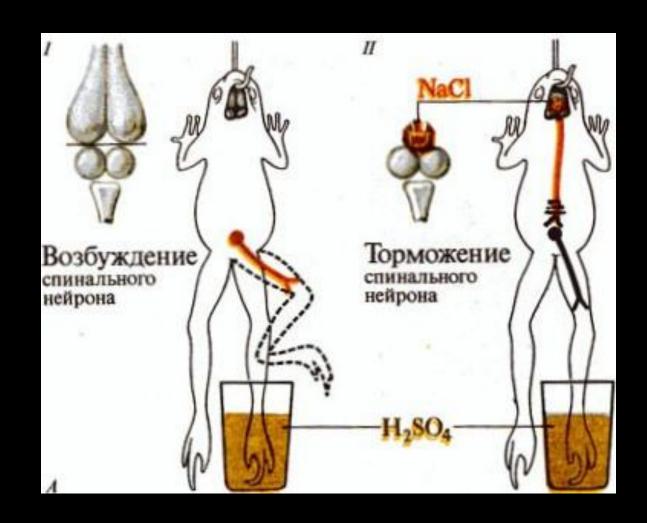
Аминазин – седативное


ТОРМОЖЕНИЕ В ЦНС

Значение торможения:

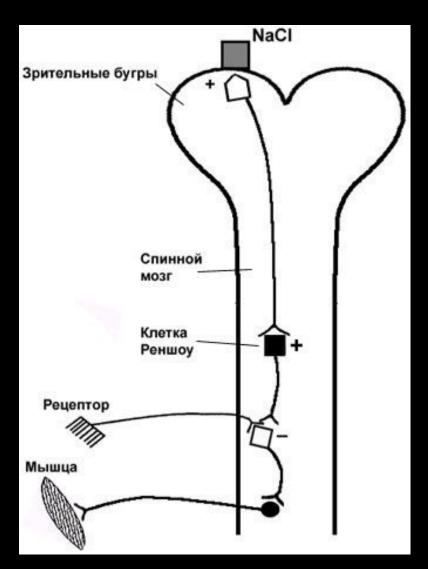
- 1. формирование условных рефлексов,
- 2. освобождает ЦНС от несущественной информации,
- з. обеспечивает координацию рефлексов,
- 4. ограничивает распространение возбуждения на другие НЦ,
- 5. выполняет охранительную функцию, защита от утомления и истощения.



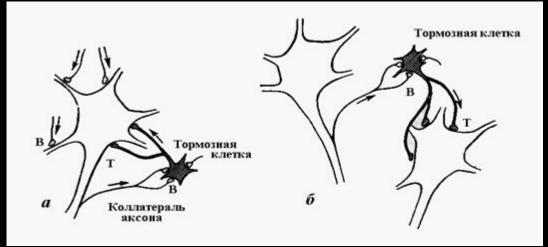

Торможение – самостоятельный нервный процесс, вызываемый возбуждением и проявляющийся в подавлении другого возбуждения.

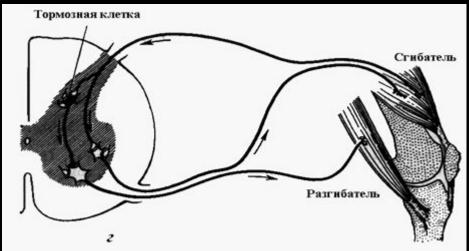
В отличие от возбуждения (ПД и ЛО), торможение только в виде ЛО.

Торможение – активный процесс (опыт Гольца – удар в область брюшины – замедление работы сердца)


Торможение открыто И.М. Сеченовым (1863)

Механизм центрального торможения





Виды торможения:

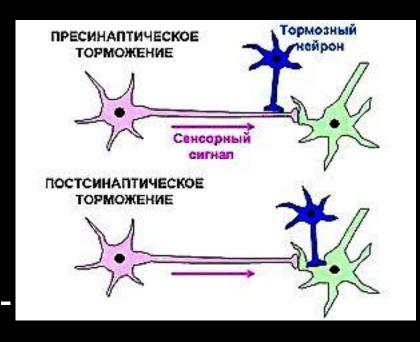
- 1. Первичное торможение требует наличия специальных тормозных нейронов:
 - 1. центральное,
 - 2. возвратное,
 - з. латеральное,
 - 4. реципрокное

2. Вторичное торможение является следствием процесса возбуждения:

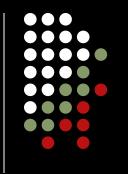
- пессимальное торможение связано с низкой лабильностью синапсов (при частом раздражении происходит стойкая деполяризация пресинаптической мембраны и десенситизация (привыкание) рецепторов постсинаптической мембраны),
- 2. <u>торможение вслед за возбуждением</u> (следовая гиперполяризация ПД)

Механизмы торможения:

1. Пресинаптическое торможение


(медиатор ГАМК → выходящий СГ -ток → стойкая

деполяризация пресинаптической мембраны → инактивация Na⁺-каналов). Блокаторы – пикротоксин, бикукулин.


2. Постсинаптическое торможение

(медиатор глицин → выходящий К⁺ и входящий СІ⁻ - ток → возникновение ТПСП). Блокаторы — стрихнин, столбнячный токсин.

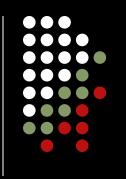
Примеры нарушения торможения в ЦНС

НАРУШЕНИЕ ПОСТСИНАПТИЧЕСКОГО ТОРМОЖЕНИЯ:

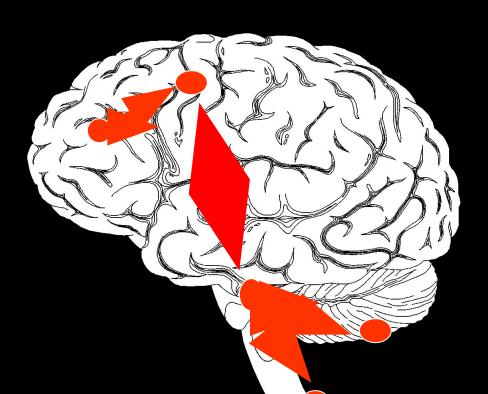
СТРИХНИН - БЛОКАДА РЕЦЕПТОРОВ ТОРМОЗНЫХ СИНАПСОВ

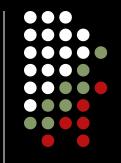
СТОЛБНЯЧНЫЙ ТОКСИН - НАРУШЕНИЕ ОСВОБОЖДЕНИЯ ТОРМОЗНОГО МЕДИАТОРА

НАРУШЕНИЕ ПРЕСИНАПТИЧЕСКОГО ТОРМОЖЕНИЯ:

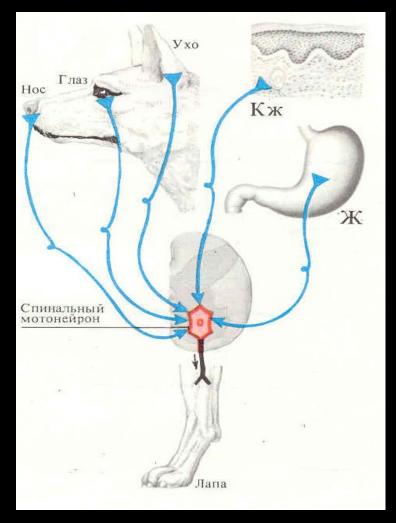

ПИКРОТОКСИН - БЛОКАДА ПРЕСИНАПТИЧЕСКИХ СИНАПСОВ

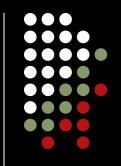
ПРИНЦИПЫ КООРДИНИРОВАННОЙ ДЕТЕЛЬНОСТИ ЦНС

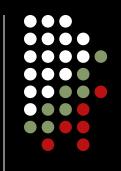

Согласованное проявление отдельных рефлексов, обеспечивающих выполнение целостных рабочих актов называется координацией.

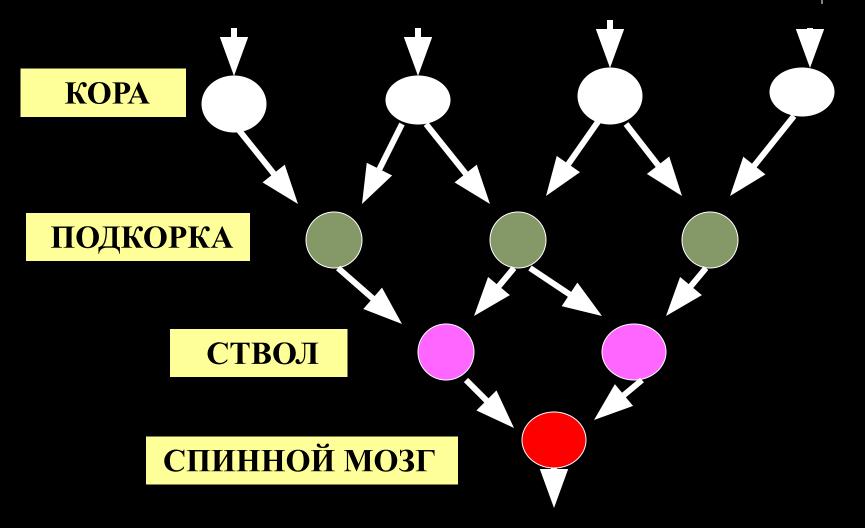


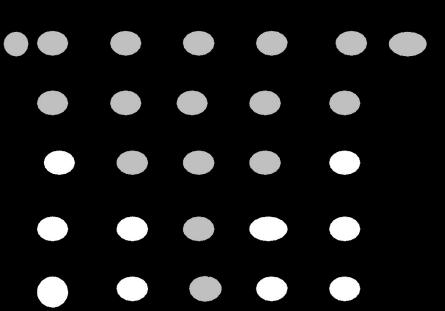
Функции координированной деятельности:




- 1) обеспечивает четкое выполнение определенных функций, рефлексов;
- 2) обеспечивает последовательное включение в работу различных нервных центров для обеспечения сложных форм деятельности;
- 3) обеспечивает согласованную работу различных нервных центров.

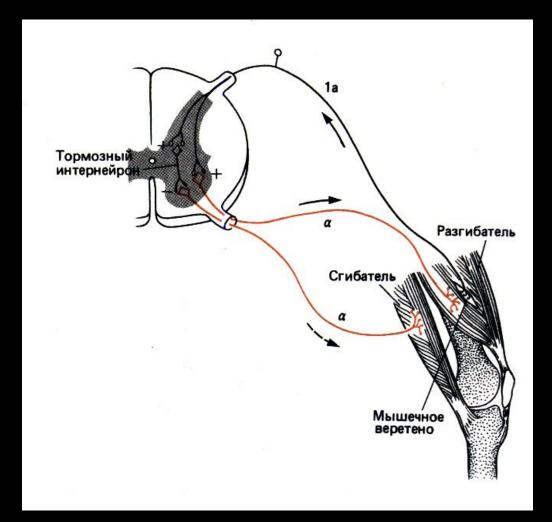

1. Принцип субординации НЦ (подчинения) – нижележащие центры подчиняются вышележащим



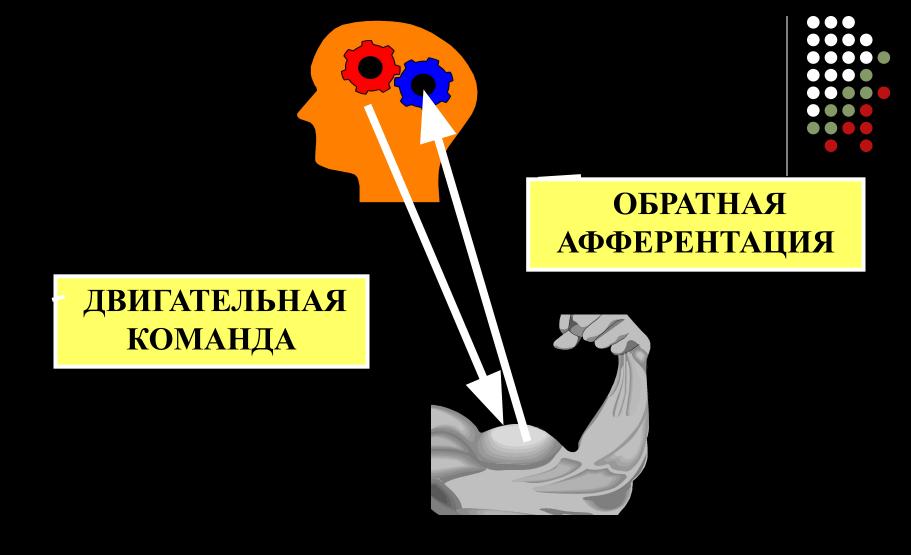


2. <u>Принцип конвергенции или общего</u> <u>КОНЕЧНОГО ПУТИ</u> лежит в основе синтетической деятельности мозга (эфферентов меньше чем афферентов в 5 раз).

ПРИНЦИП ОБЩЕГО КОНЕЧНОГО ПУТИ



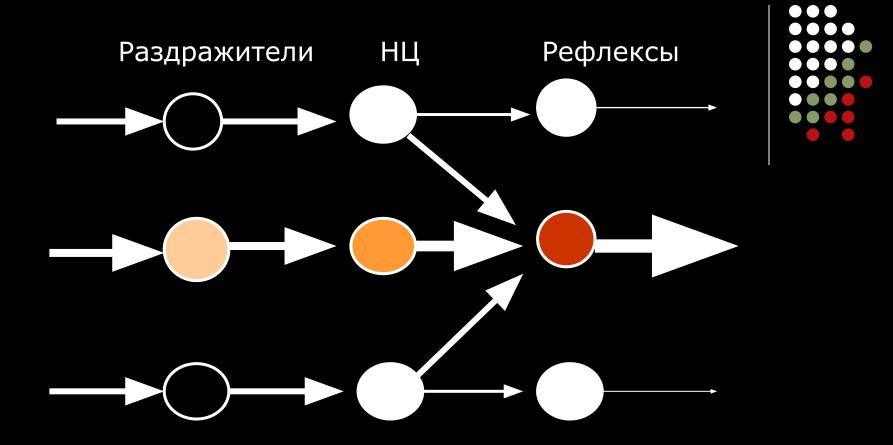




3. <u>Принцип дивергенции или</u> иррадиации лежит в основе аналитической деятельности мозга. Иррадиация возбуждения возникает при действии сильных раздражителей.

4. <u>Принцип реципрокности</u> – взаимного торможения между центрами антагонистами (центры сгибателя и разгибателя, вдоха и выдоха, глотания и дыхания и т.п.)

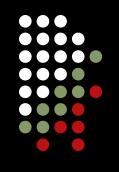
5. <u>Принцип обратной афферентации</u> (обратной связи)


6. Принцип индукции.

Сильный процесс возбуждения в нервном центре вызывает (навърги торможение в соседних нервных центрах (пространственная • • • • отрицательная индукция), а сильный тормозной процесс индуцирует в соседних нервных центрах возбуждение (пространственная положительная индукция).

При смене процессов возбуждения и торможения в пределах одного центра говорят о последовательной отрицательной или положительной индукции.

Индукция ограничивает распространение (иррадиацию) нервных процессов и обеспечивает концентрацию. От степени развития индукции зависит подвижность нервных процессов, возможность выполнения движений скоростного характера, требующих быстрой смены возбуждения и торможения.



7. <u>Принцип доминанты</u> по Ухтомскому является руководящим принципом в обеспечении целенаправленной деятельности ЦНС

• Доминанта – временно господствующий очаг возбуждения, определяющий характер ответной реакции организма на внешние и внутренние раздражения.

Основные признаки доминанты (по А.А.Ухтомскому)

- 1. Повышенная возбудимость доминантного центра (низкий порог возбуждения)
- 2. Стойкость возбуждения в доминантном центре
- 3. Способность подкреплять свое возбуждение посторонними импульсами
- 4. Способность тормозить другие текущие рефлексы на общем конечном пути
- 5. Инертность доминантного центра