

НОВЫЕ ТЕХНОЛОГИИ И ПРИНЦИПИАЛЬНЫЕ ПОДХОДЫ В ЛУЧЕВОЙ ТЕРАПИИ

Сеанс R-терапии

- Одна из первых R-установок начала века
- Врач рядом с
 больной с
 секундомером
 в руках

Брахитерапия: первые сеансы

Результаты сочетанного мучевого лечения

онаподольченія птион на Во время льченія (посль 2-хъ курова рентг. и 4 впрыск. торія X).

Доктор Кармин М.И.

Институт Морозовыхъ 1913 год

895 г. открытие рентгеновского излучения ульгельмом Конрадом Рентгеном

че естественной

чри Беккерелем

й радиоактивности Зори

- Около 60% больных подвергаются
 хирургическому лечению или хирургическому в сочетании с лучевой и/или химиотерапией
- ⊙Около 30% пациентов получают только лучевое лечение и 10% - химиотерапию

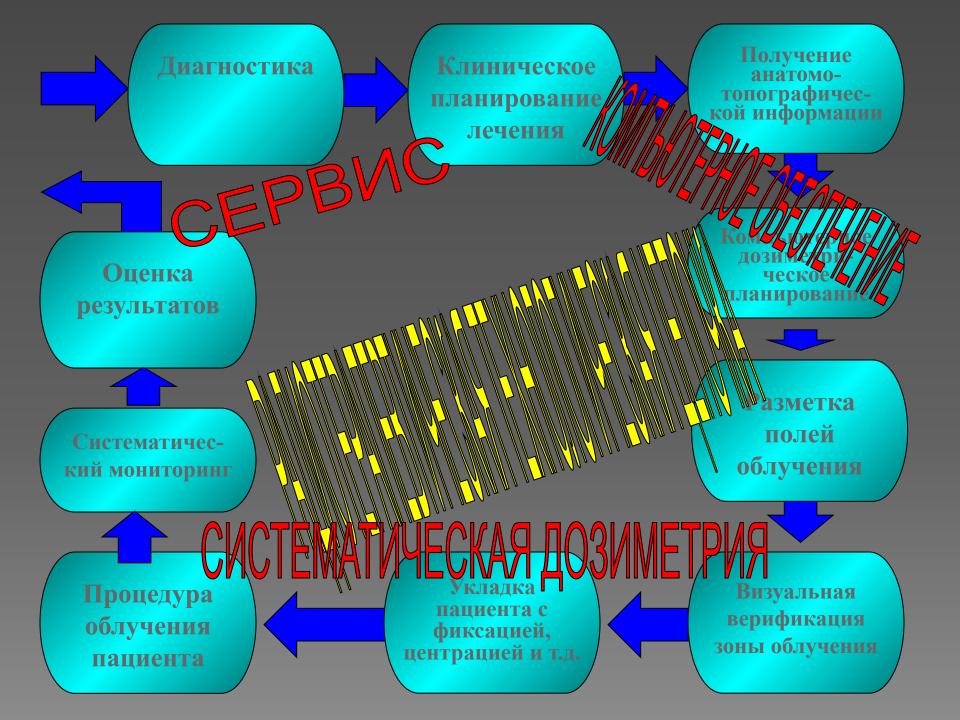
Летальность больных со злокачественными новообразованиями в течение первого года с момента установления диагноза (Россия, 2007), %

На сегодня:

- В России ежегодно от злокачественных новообразований умирает около 300 000 человек
- Впервые в жизни устанавливается диагноз злокачественного новообразования ≈450 000 больным, т.е. каждые 1,2 минуты выявляется новый случай злокачественной опухоли
- В конце 2007 года состояло на учете 2 535 114 пациентов с диагнозом злокачественного новообразования, т.е. 1,8% населения страны
- В Европе к настоящему времени живут около 10 млн. человек, перенесших онкологические заболевания, 50% из которых получили лучевое лечение

Распространенность злокачественных новообразований РФ, 2007г.

Локализация опухоли	Абс. число	I-Пст. %	Шст. %	IVст.	Летальность на первом году
		15,4	23,8	22,8	30,2
Полость рта	10736	29,5	37,5	31,2	39,1
Пищевод	6667	24,3	39,3	29,0	63,3
Желудок	39269	24,1	28,3	42,3	53,5
Прямая кишка	22597	43,2	27,8	25,6	30,0
Трахея, бронхи	53079	25,9	33,3	35,2	55,3
Гортань	6189	34,8	47,5	16,0	28,1
Шейка матки	13038	58,3	30,0	9,8	19,0


Использование лучевой терапии в РФ 2007 год

Закончили специальное лечение	Всего	%	Только л/т	Всего с л/т
	784	52,0	13,7	16,5
Полость рта	4860	45,3	36,9	55,8
Пищевод	1916	28,7	27,3	32,9
Желудок	13307	33,9	0,1	0,2
Прямая кишка	11923	52,8	1,9	2,5
Трахея и бронхи	12971	24,4	8,5	16,5
Гортань	3651	59,0	35,7	45,4
Шейка матки	9365	71,8	42,6	51,2

Роль лучевой терапии

- Лучевая терапия при определенных локализациях и стадиях заболевания является альтернативой оперативному вмешательству
- Не менее значим вклад радиотерапии в качестве этапа комбинированного лечения, особенно в случаях выполнения органосохраняющих операций как гаранта стойкости лечебного эффекта
- В последние годы имеется тенденция к более широкому применению лучевой терапии как этапа комбинированного лечения при различных формах рака, что в определенной мере связано с развитием органосохраняющего и функционально-щадящего лечения

- По мнению экспертов ВОЗ успех лучевой терапии зависит на 25% от адекватного компьютерного дозиметрического планирования процедур облучения и их воспроизведения и на 25% от наличия современной радиотерапевтической аппаратуры
- Лучевая терапия в онкологии представляет собой сложную в техническом и интеллектуальном плане технологическую цепочку, исключение одного из звеньев которой неизбежно приводит к ухудшению качества лечения
- С учетом современных требований обеспечения гарантии качества она состоит из нескольких последовательных этапов:

Отделение радиационной онкологии сегодня должно быть оснащено полным комплексом аппаратуры

Базовый набор оборудования для лучевой терапии

- Ускоритель терапевтический на 18-20 МэВ
- Ускоритель терапевтический на 5-6 МэВ
- Гамма-терапевтический аппарат
- Рентгенотерапевтический аппарат
- Аппарат для брахитерапии
- Рентгеновский симулятор
- Рентгеновский компьютерный томограф
- Системы дозиметрического планирования
- Аппаратный комплекс для клинической дозиметрии и радиационных измерений
- Анализатор дозового поля
- Оборудование для иммобилизации пациентов
- Аппаратура и приспособления для формирования дозного поля
- Система компьютерного сопровождения лучевой терапии
- Аппараты для гипертермии, лазерной терапии, гипоксии и т.д..

Необходимое количество аппаратов в отделении радиационной онкологии

- 1 аппарат для наружного облучения на 250-300 тыс. населения (в Европе на 200тыс.)
- 1 аппарат для контактной лучевой терапии на 1 млн. населения
- на 3-4 аппарата дистанционной лучевой терапии по одному КТ и рентгеновскому симулятору
- на каждый аппарат контактной лучевой терапии один аппарат рентгенотелевидения
- на 3-4 аппарата лучевой терапии по одному дозиметрическому комплексу

Состояние лучевой терапии в России

- В экономически развитых странах радиотерапия используется у 70% онкологических больных, в России этот показатель колеблется от 25 до 50%. Таким образом ежегодно с учетом заболеваемости более 100 000 онкологических больных не получают лечение в полном объёме
- Более того в ряде онкологических диспансеров очередь на лучевую терапию составляет 1,5-2 месяца. Это положение в основном связано с плохим и недостаточным техническим оснащением онкологических учреждений

Успех лучевой терапии зависит:

- радиочувствительность опухоли 50%
- аппаратное оснащение 25%
- выбор плана лучевого лечения
 и точность его воспроизведения 25%

ВИДЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

ение

- 1.Рентгеновское излучение низких энергий (до 1000 КэВ)
- 2. Гамма-излучение радиоактивных изотопов иридия, цезия и кобальта
- 3. Высокоэнергетическое излучение (до 20-25 МэВ)

- 1.Электронное
- 2.Протонное
- 3.Нейтронное
- 4.Мезонное
- 5.Ионное

СПОСОБЫ ОБЛУЧЕНИЯ

ДИСТАНЦИОННО Е

ВНУТРЕННЕЕ

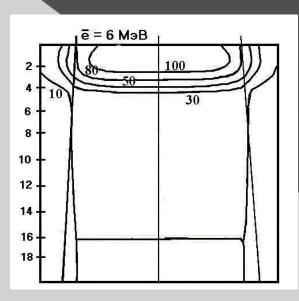
КОНТАКТНОЕ

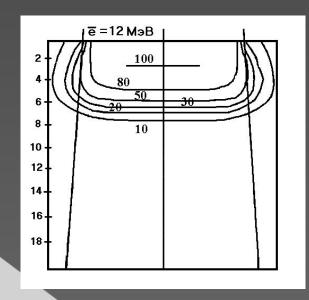
АППЛИКАЦИ ОННОЕ ВНУТРИТКАН ЕВОЕ

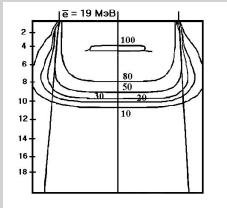
ВНУТРИПОЛО СТНОЕ

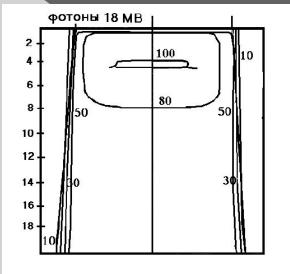
РАК ЩИТОВИДНОЙ ЖЕЛЕЗЫ С РТДАЛЕННЫМИ МЕТАСТАЗАМИ

Показатели пятилетнего излечения после операции и лечения I ¹³¹

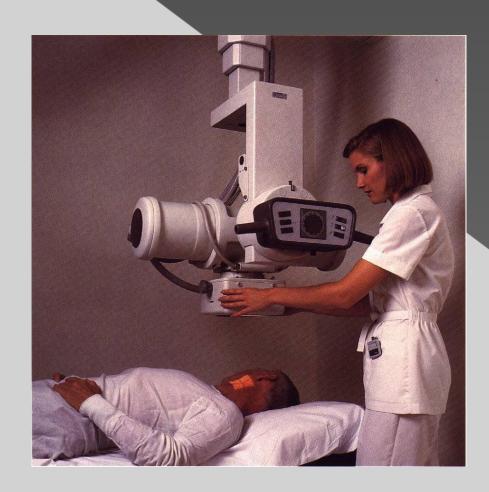

Контингент больных	Пятилетнее		
	излечение в %		
дети	97		
взрослые	76		


лечебная активность I ¹³¹— 2-4 ГБк курсы с интервалами 3 месяца

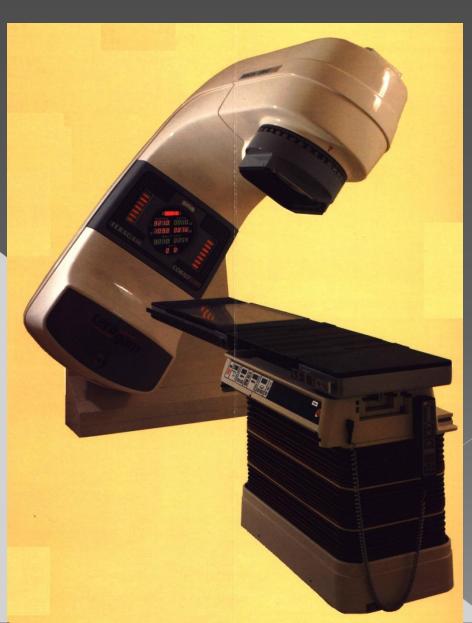

Методы лучевой терапии и источники излучения


дистанционное	контактное облучение			
облучение	внутриполостное	внутритканевое		
излучение	излучение	закрытые источники	открытые источники	
гамма ⁶⁰ Со, ¹³⁷ Сs		⁶⁰ Co	¹⁹⁸ Au	
рентгеновское 100-250 КэВ	гамма ⁶⁰ Со, ¹³⁷ Сs, ¹⁹² Ir	$^{137}\mathrm{Cs}$	³² P	
тормозное 6-45 МэВ	нейтроны ²⁵² Cf	¹⁹² Ir	^{131}I	
электроны 4-20 МэВ		²⁵² Cf		
протоны 70-1000 МэВ		¹⁹⁸ Au		
нейтроны 6-15МвВ				

Дозное распределение при различных энергиях ё и ү излучения

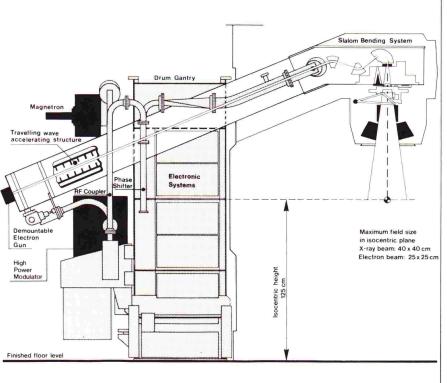


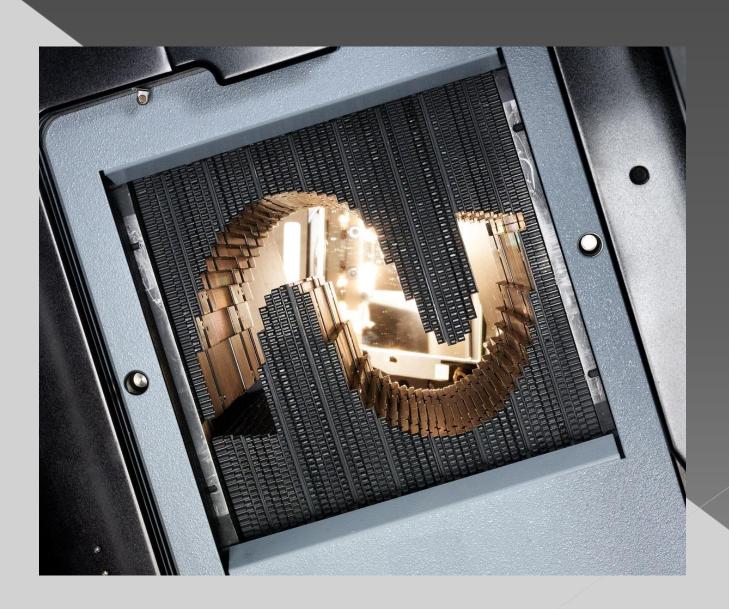
Рентгенотерапия



60-300КэЕ

POKYC - AM TEPACAM


микротрон - м


SL - 20 Philips (=Elekta)



Многолепестковые коллиматоры OPTIFOCUS (82 лепестка)

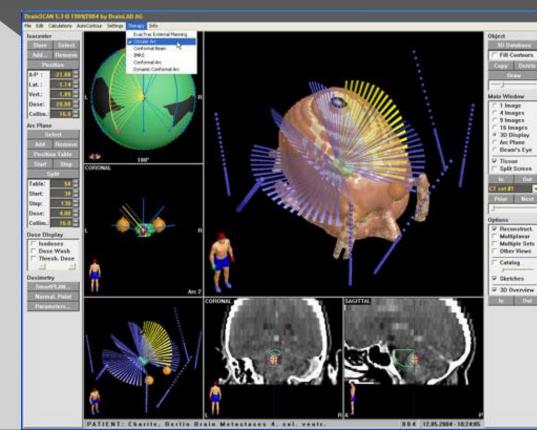
Иноголепестковые микроколлиматоры

ModuLeaf

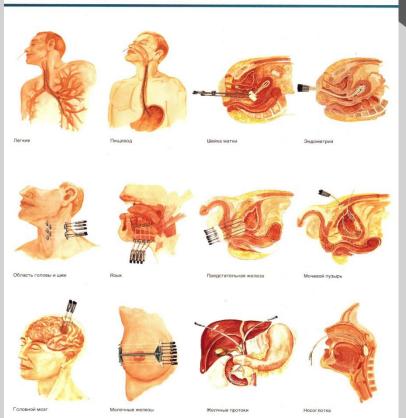
Micro MLC

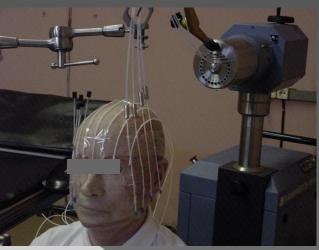
Стереотаксическая радиохирургия

Gamma Knife



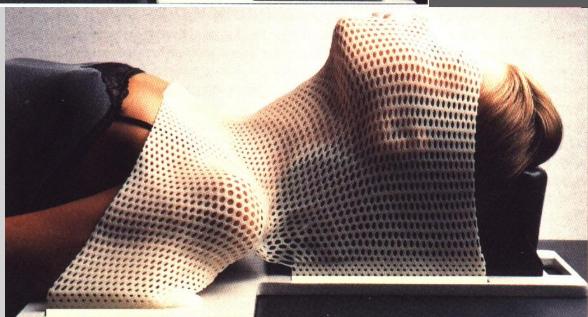
Стереотаксическая радиохирургия

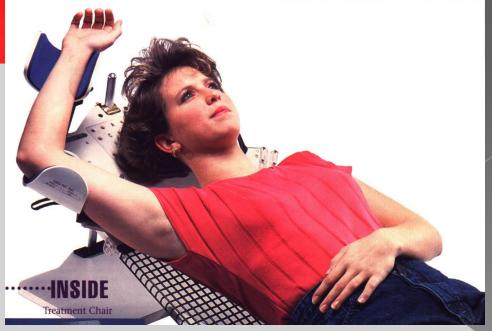

Стереотаксическая радиохирургия



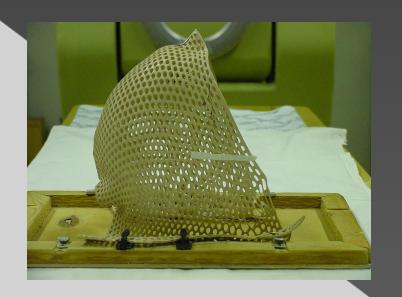
Брахитерапевтическ ий аппарат ГАММАМЕД - 12i

БРАХИТЕРАПИЯ С ИСПОЛЬЗОВАНИЕМ ВЫСОКОЙ МОЩНОСТИ ДОЗЫ

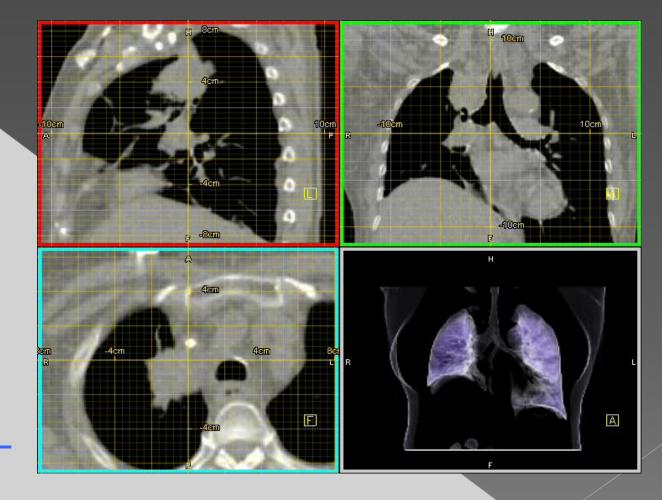


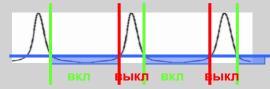

Фиксирующие приспособления:

Использование фиксирующих устройств влияет на результат больше чем размер опухоли и подведенная доза 98%
 5-лет
 77%
 P=0,002
 Goldsmith G., 1994



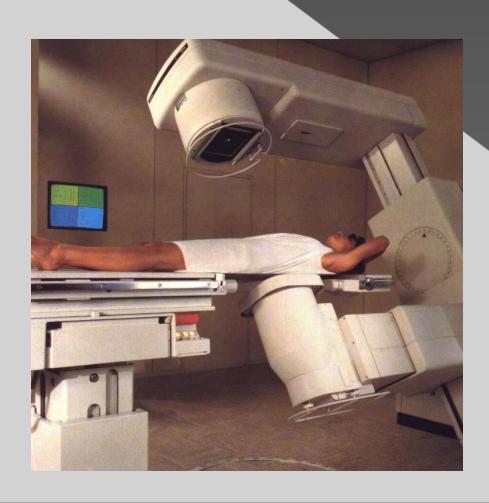
Фиксирующие устройства АМФР



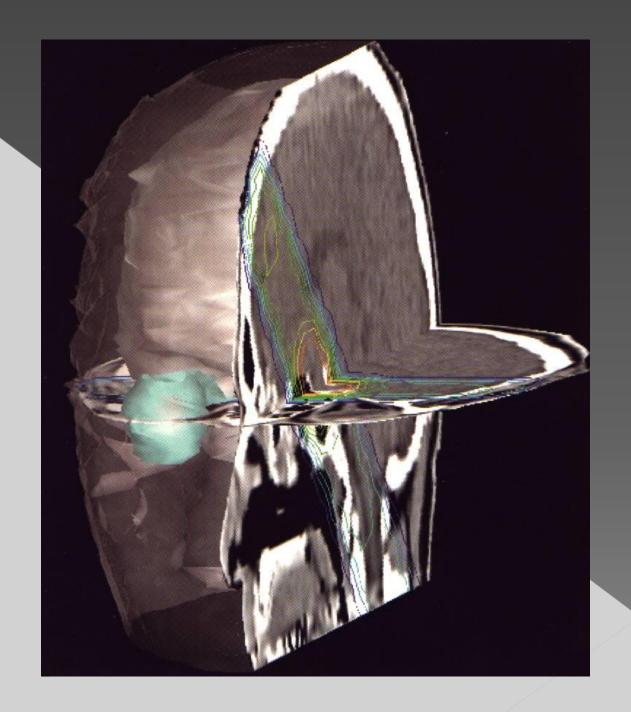


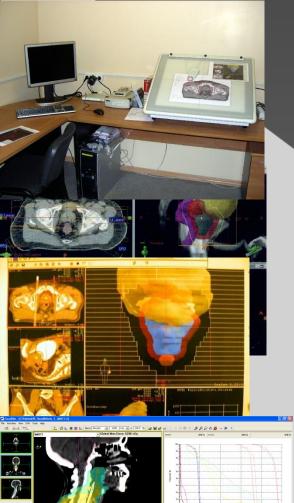
Технология ПЭТ/КТ

Синхронизация КТ и ЛУ с дыханием

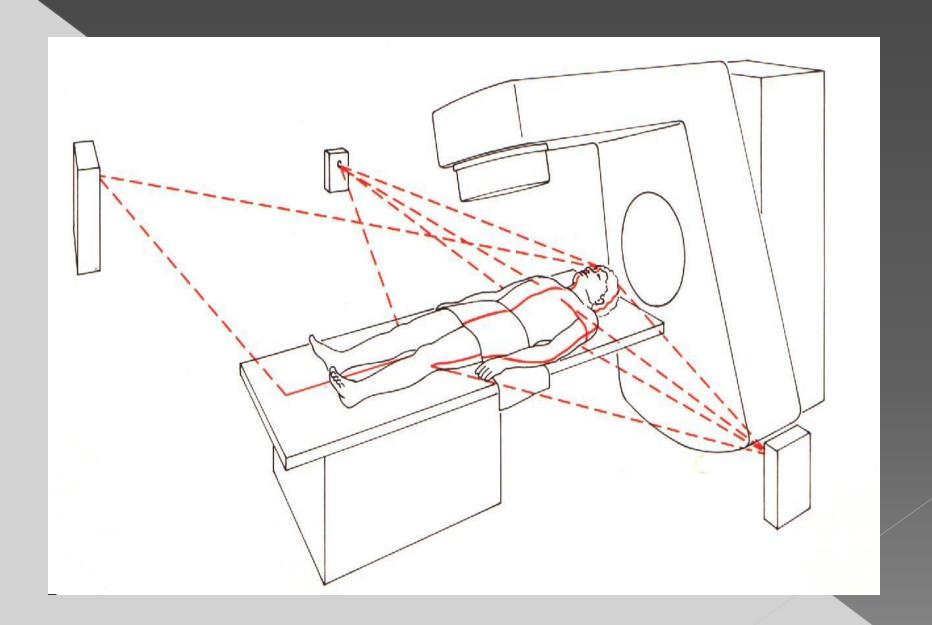


Симулятор при ДЛТ и ВПЛТ




РТ: цифровая система портальной изации

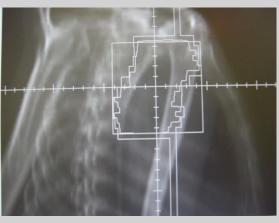
3D конформное облучение


Входная информация срезы с КТ

Применяемые алгоритмы – конволюционная свертка, суперпозиция, тонкий луч

Дозное распределение в любой проекции и трехмерное

Возможность сравнения планов


Оценка дозы на критические органы по ГДО

Реализация плана облучения

Условия сеанса облучения передаются на ускоритель

Портальная визуализация

Критически переосмыслены следующие постулаты:

- 1. Уровень канцерицидной дозы
- 2. Методика дробления суммарной дозы
- 3. Разделение опухолей в клинике на радиочувствительные и радиорезистентные

Структура опухолей и потребность в лучевой терапии у первичных онкологических больных, поступивших в специализированный стационар

<u>100</u> ОПУХОЛЕЙ

РЕЗЕКТАБЕЛЬНЫЕ НЕРЕЗЕКТАБЕЛЬНЫЕ

НЕКУРАБЕЛЬНЫЕ

30

60

10

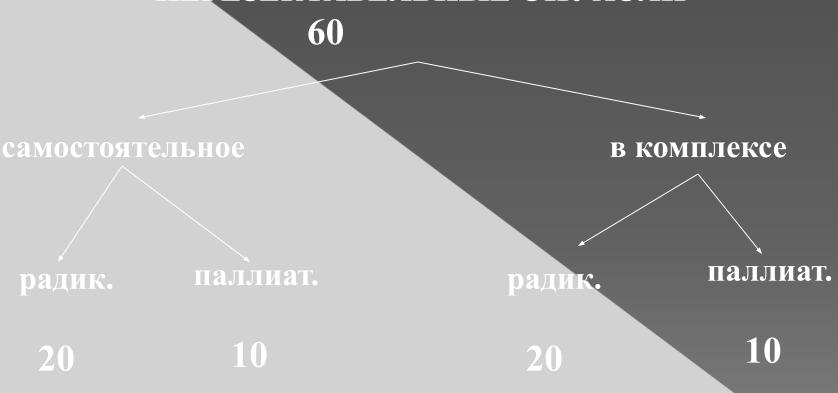
Потребность в лучевой терапии у первичных онкологических больных, поступивших в специализированный стационар (%)

РЕЗЕКТАБЕЛЬНЫЕ ОПУХОЛИ 30

Радикальное как органосохранная альтернатива операции

Как компонент комбинированного метода в сочетании с операцией

20


Резектабельные опухоли

Лучевая терапия <u>не является</u> альтернативой хирургическому лечению Лучевая терапия может рассматриваться как <u>альтернатива</u> операции

легкое желудок прямая кишка молочная железа шейка матки простата гортань

Потребность в лучевой терапии у первичных онкологических больных, поступивших в специализированный стационар (%)

НЕРЕЗЕКТАБЕЛЬНЫЕ ОПУХОЛИ

Потребность в лучевой терапии у первичных онкологических больных, поступивших в специализированный стационар (%)

Идеология современной лучевой терапии:

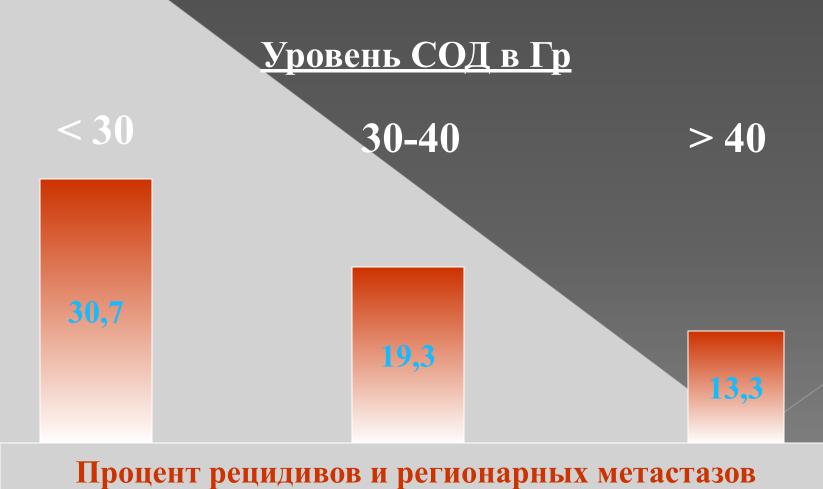
- •При малых раках Л/Т должна рассматриваться в качестве органосохраняющей функционально-щадящей альтернативы хирургическому лечению
- •При резектабельных местно-распространенных опухолях увеличение объема органосохраняющего функционально-щадящего лечения может быть обеспечено за счет усиления пред-, интра-, либо послеоперационного лучевого воздействия как гаранта стойкости онкологических результатов
- •При местно-распространенных нерезектабельных опухолях расширение показаний к использованию комплекса воздействий, включая модифицированную Л/Т
- •При <u>генерализованных формах</u> расширение паллиативной и симптоматической Л/Т в комплексе с другими воздействиями для улучшения качества жизни пациентов

ЛУЧЕВЫЕ ПОВРЕЖДЕНИЯ

ЛЕТАЛЬНЫЕ

СУБЛЕТАЛЬНЫЕ

ПОТЕНЦИАЛЬНО ЛЕТАЛЬНЫЕ


ГИБЕЛЬ КЛЕТКИ РЕПАРАЦИЯ И ВОССТАНОВЛЕНИЕ ЖИЗНЕДЕЯТЕЛЬНОСТ И

РЕПОПУЛЯЦИЯ ЧЕРЕЗ 2 - 2,5 НЕДЕЛИ

Рак щитовидной железы

<u>Комбинированное лечение</u>

Зависимость результатов от дозы предоперационного облучения

Зависимость степени лучевого повреждения рака легкого от дозы, подведенной за первую неделю предоперационного облучения

Доза	степень патоморфоза	
за первую неделю	I-II	III-IV
16	21,0±9,6*	79,0±9,6*
	38,9±11,8	61,1±11,8
	53,2±6,3*	46,8±6,3*
Всего	44,4	55,6

Варианты повышения эффективности лучевой терапии

Радиомодификаторы Нетрадиционное фракционирование Гипер-Дневное Радио-Радиодробление дозы фракционирование сенсибилизаторы протекторы Динамическое гипертермия гипоксия XUMUOфракционирование препараты

Elekta SYNERGY:

Elekta SynergyTM

Абсолютно новый уровень оборудования

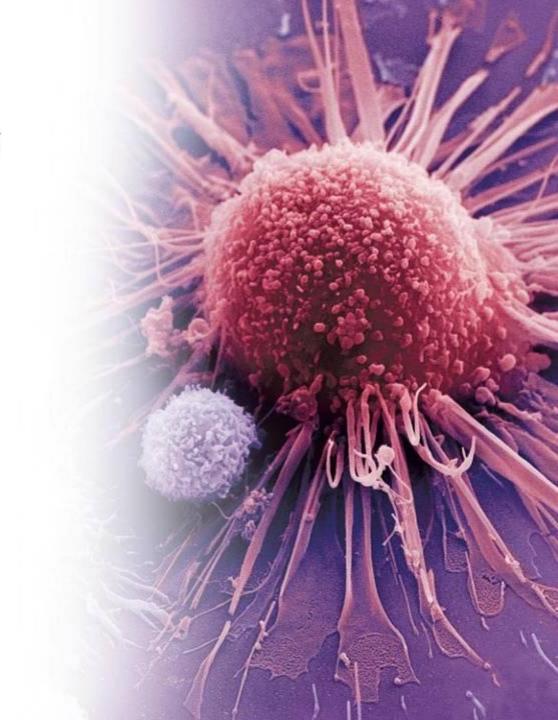
Интегрирует в одном аппарате

с общим изоцентром

- Цифровой Линейный Ускоритель
- Мегавольтовое устройство портальных изображений
- Объёмная рентгеновская томография высокого разрешения

Elekta SynergyTM

Абсолютно новый уровень оборудования


Беспрецедентное качество в рутинной работе

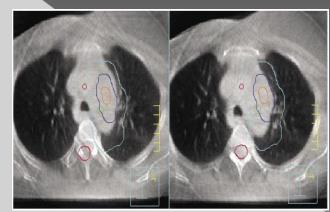
- 3Д конформная лучевая терапия
- Лучевая терапия с модуляцией интенсивности
- Визуальный контроль мишени во время облучения
- Прецизионная форма терапевтического пучка

Fighting serious disease

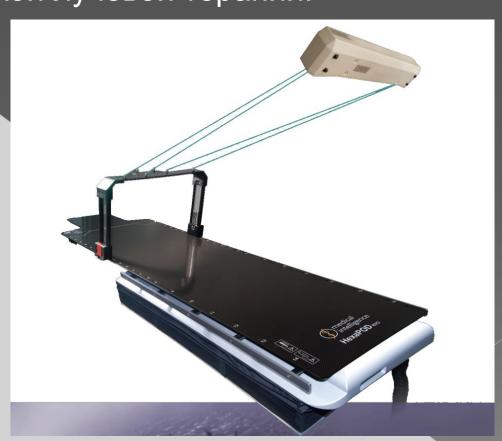
Стереотаксическая лучевая терапия

Стереотаксическая система для лучевой терапии с визуальным сопровождением

Что дает Elekta Axesse?


- ЭСКОЛОЦИЯ ДОЗЫ В МИШЕНИ
- Гипофракционирование
- Возможность облучения малых мишеней
- Более точное очерчивание мишени
- Прецизионное формирование пучка
- Сужение полутеней
- Минимальная утечка излучения
- Высокотехнологичные методики
 - > Стереотаксис с визуальным контролем
 - УМАТ (объемно-модулированное ротационное облучение)

- Интегрированна я система планирования
 - > Конформная
 - > IMRT/IMRS
 - Классическая стереотаксическ ая радиотерапия и радиохирургия



- Интегрированная система получения объемных изображений XVI
- Уеткая визуализация анатомических структур с привязкой к координатной системе ускорителя обеспечивает возможность эскалации дозы и коррекции плана во время облучения

- Уникальная роботизированная система позиционирования пациента
 - автоматизированая коррекция положения по 6 координатам
 - Субмиллиметровая точность
 - Радиопрозрачная дека дает изображение высокого качества

- Гибкость в применении
 - > удобный доступ
 - широкий диапазон некопланарных углов
 - большая апертура удобство и гибкость укладки

Elekta Axesse:

- Единая система, а не механическое объединение технических решений; обеспечивает оптимизацию и единство технологического процесса, полный контроль за прохождением пациента
- Предлагает полный спектр технических возможностей, вплоть до самых передовых, позволяя врачу выбрать наиболее подходящую методику для каждого конкретного пациента
- Великолепное качество трехмерных изображений, обеспечивающее точную локализацию мишени и сохранение критических структур в мягких тканях.

...Полный контроль без компромиссов!