Физика атома, атомного ядра и элементарных частиц

43.(2). Ядерные реакции под действием нейтронов. Формулы Брейта-Вигнера.

Реакции под действием нейтронов - самый большой и практически наиболее важный класс ядерных реакций. Объясняется это тем, что в отличие от протонов, взаимодействие нейтронов не затруднено кулоновским барьером, поэтому нейтроны могут взаимодействовать с ядрами и при низких энергиях, что имеет большое значение.

Наиболее мощным источником нейтронов является ядерный реактор. Поток нейтронов в современных реакторах достигает плотности 10¹⁵ нейтронов/см²сек.

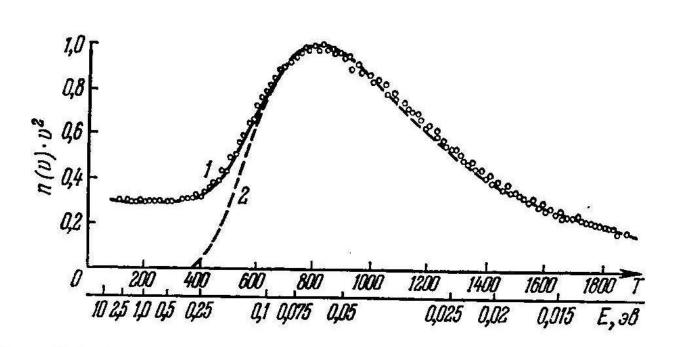
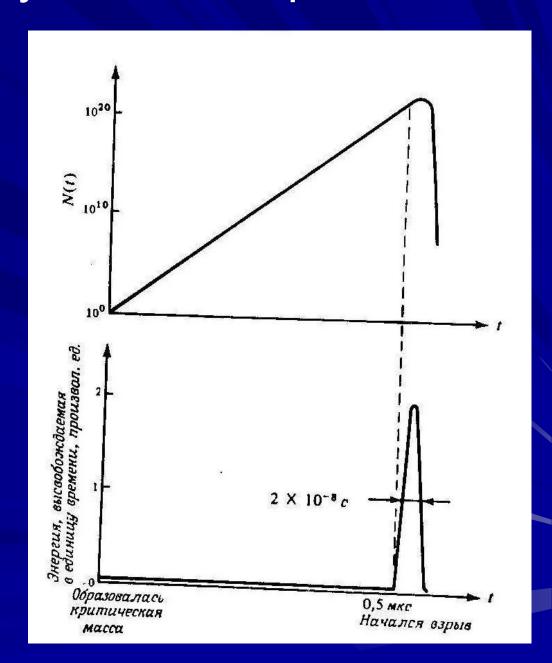



Рис. 9.6. Энергетический спектр нейтронов в реакторе ВВР.

— время пролета (в микросекундах) нейтронами некоторого стандартного расстояния,

— энергия, соответствующая времени пролета, n(v) — плотность числа нейтронов со скоростью v. Пунктиром показано максвелловское распределение.

Еще более мощные (но кратковременные) потоки нейтронов возникают при взрыве атомной и водородной бомбы: до 10³⁰ нейтрон/сек.

Пучки нейтронов больших энергий получают с помощью ускорителей, используя реакции вида (p,n) и (d,n). Энергия получаемых таким способом нейтронов лежит в области от десятков кэв до нескольких Гэв.

В лабораториях, не располагающих ускорителями и реакторами, применяются источники нейтронов, работа которых основана на применении радиоактивных изотопов. Чаще всего используются источники, в которых протекает реакция ${}^4\text{He}_2 + {}^9\text{Be}_4 \rightarrow {}^{12}\text{C}_6 + \text{n}$.

В этих источниках альфа-частицы получают от какого-либо альфа-активного изотопа: ²²⁶Ra₈₈, ²¹⁰Po₈₄, ²³⁹Pu₉₄. Соответственно источники называются: радий-бериллиевый, полоний-бериллиевый и плутоний-бериллиевый.

Классификация нейтронов по энергиям

- Быстрые нейтроны: Т > 100 кэв,
- Промежуточные нейтроны: 1 кэв < Т < 100 кэв,
- Медленные нейтроны: Т < 1 кэв.

Медленные нейтроны подразделяются на:

- резонансные: 0.5 эв < T < 1 кэв,
- тепловые: 0.025 эв < T < 0.5 эв,
- холодные: 3·10⁻⁷ эв < T < 0.025 эв,
- ультрахолодные: T < 3·10⁻⁷ эв.

Название "тепловые нейтроны" связано с тем, что энергия 0.025 эв соответствует комнатной тем-пературе 300 К.

Реакции под действием нейтронов

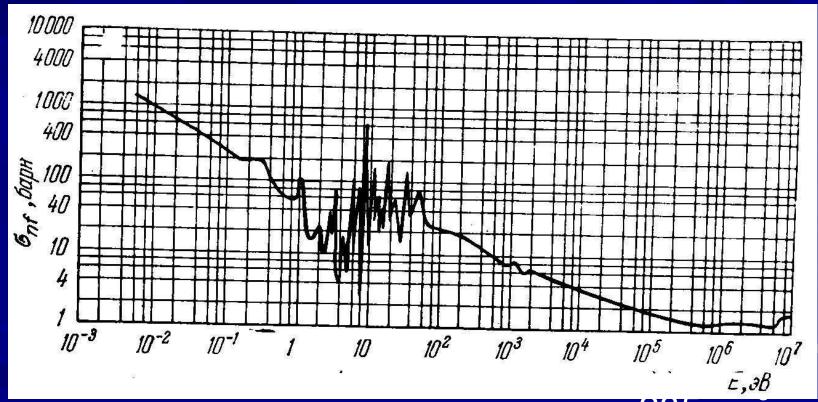
Тип реакции	Сечения реакции
Радиационный захват (п, ү)	Идет на всех ядрах. Сечение: для тепловых нейтронов варьируется в широком интервале от 0,1 до 10^3 и даже 10^6 бари ($_{65}$ Хе 135); для быстрых ней гронов—от 0,1 до нескольких бари.
Упругое рассеяние (n, n)	Сечение варьируется в интервале нескольких барн.
Неупругое рассеяние (п, п')	Пороговый процесс. Сечение по порядку величины равняется нескольким бари.

Наиболее важные из реакций радиационного захвата

$$n+{}^{238}U_{92} \rightarrow {}^{239}U_{92} + \gamma$$
 ${}^{239}U_{92} \rightarrow {}^{239}Np_{93} + e^- + \tilde{v}_e$ (23мин) ${}^{239}Np_{93} \rightarrow {}^{239}Pu_{94} + e^- + \tilde{v}_e$ (2.3дня)

$$n + {}^{232}Th_{90} \rightarrow {}^{233}Th_{90} + \gamma$$

$$^{233}Th_{90} \rightarrow ^{233}Pa_{91} + e^{-} + v_{e}$$
 (22мин)
 $^{233}Pa_{91} \rightarrow ^{233}U_{92} + e^{-} + v$ (27дней)


Реакции под действием нейтронов

(r. p)	Наиболее важные реакции: $n+_2He^3\longrightarrow_1H^3+p+0.76$ МэВ, $\sigma_{\text{тепл. нейтр.}}=5400$ барн, $n+_7N^{14}\longrightarrow_6C^{14}+p+0.63$ МэВ, $\sigma_{\text{тепл. нейтр.}}=1.75$ бари.
(n, α)	Наиболее важные реакции: $n + {}_{3}L^{i6} \longrightarrow {}_{1}H^{3} + \alpha + 4,78$ МэВ, $\sigma_{\text{тепл. нейтр.}} = 945$ барн, $n + {}_{5}B^{10} \longrightarrow {}_{3}L^{i7} + \alpha + 2,79$ МэВ, $\sigma_{\text{тепл. нейтр.}} = 3840$ барн.
(n, 2n)	Пороговая реакция. Порог по порядку величины равняется 10—15 МэВ. Сечение: несколько десятых бари.

Реакция деления ядер под действием нейтронов

(n, f)

В подавляющем большинстве случаев пороговая реакция. Сечение очень мало, исключая отдельные случаи ($_{92}$ U²³⁵, $_{92}$ U²³⁸ и т. д).

Сечение реакции деления ядер урана-235 нейтронами в зависимости от энергии нейтронов.

Формулы Брейта-Вигнера

Реакции под действием нейтронов идут через составное ядро и являются резонансными. Сечение резонансной реакции описывается формулой:

$$\sigma_{ab} = \pi \lambda_a^2 g \frac{\Gamma_a \Gamma_b}{(T - T_0)^2 + (\Gamma/2)^2}$$
 (43.1)

где $\chi_a = \lambda/2\pi$ - приведенная дебройлевская длина волны налетающей частицы, T - кинетическая энергия налетающей частицы, T_0 - резонансная энергия (значение уровня энергии составного ядра), Γ_a , Γ_b - парциальная ширина уровня по каналам a и b, Γ - полная ширина уровня, g - статистический фактор.

Полная ширина уровня Γ связана с вероятностью распада W и средним временем жизни ядра au соотношениями:

$$\Gamma aupprox \mathbb{Z}, \quad au=rac{\mathbb{Z}}{\Gamma}, \quad W=rac{1}{ au}=rac{\Gamma}{\mathbb{Z}}$$

Если ядро распадается по каналам a, b, b', ..., то

$$W = W_a + W_b + W_{b'} + \dots = \frac{\Gamma_a}{\mathbb{N}} + \frac{\Gamma_b}{\mathbb{N}} + \frac{\Gamma_{b'}}{\mathbb{N}} + \dots$$

и величины Γ_a , Γ_b - называются парциальными ширинами уровня по каналам a, b, b', ...

Статистический фактор:

$$g = \frac{2J+1}{(2J_a+1)(2J_A+1)}$$

где J - спин промежуточного ядра, J_a - спин налетающей частицы, $J_{\scriptscriptstyle A}$ - спин ядра-мишени.

Статистический фактор g обычно имеет величину порядка 1, поэтому при решении задач, если в условии нет особых указаний, можно считать g=1.

Если сложить сечения реакций (формула (43.1)) по всем каналам, то получится полное сечение образования составного ядра:

$$\sigma_{aC} = \pi \lambda_a^2 g \frac{\Gamma_a \left(\Gamma_b + \Gamma_{b'} + \Gamma_a + \dots\right)}{\left(T - T_0\right)^2 + \left(\Gamma/2\right)^2} =$$

$$= \pi \lambda_a^2 g \frac{\Gamma_a \Gamma}{\left(T - T_0\right)^2 + \left(\Gamma/2\right)^2}$$

$$(43.2)$$

Для реакций под действием нейтронов формулы (43.1) и (43.2) принимают вид:

$$\sigma_{n\gamma} = \pi \lambda_n^2 g \frac{\Gamma_n \Gamma_{\gamma}}{\left(T - T_0\right)^2 + \left(\Gamma/2\right)^2} \tag{43.3}$$

$$\sigma_{nC} = \pi \lambda_{n}^{2} g \frac{\Gamma_{n}^{1}}{(T - T_{0})^{2} + (\Gamma/2)^{2}}$$
(43.4)

$$\sigma_{nn} = \pi \lambda_n^2 g \frac{\Gamma_n^2}{(T - T_0)^2 + (\Gamma/2)^2}$$
 (43.5)

Последняя формула определяет сечение упруго-го рассеяния нейтронов.

В резонансе при $T = T_0$ сечение имеет максимум, и формула (43.4) принимает вид:

$$\left(\sigma_{nC}\right)_{0} = \sigma_{0} = \pi \lambda_{0}^{2} g \frac{\Gamma_{n0} \Gamma}{\left(\Gamma/2\right)^{2}} = 4\pi \lambda_{0}^{2} g \frac{\Gamma_{n0}}{\Gamma} \quad (43.6)$$

где Γ_{n0} - парциальная ширина при резонансном значении энергии налетающего нейтрона.

При $T \neq T_0$ ширина $\Gamma_n \neq \Gamma_{n0}$, а зависит от длины волны нейтрона:

$$\Gamma_n = \Gamma_{n0} \frac{\lambda_0}{\lambda} \tag{43.7}$$

Подставляя (43.7) в (43.4) и учитывая (43.6) после ряда преобразований получаем:

$$\sigma_{nC} = \sigma_0 \frac{(\Gamma/2)^2}{(T - T_0)^2 + (\Gamma/2)^2} \cdot \sqrt{\frac{T_0}{T}}$$
 (43.8)

В этой формуле учтено, что

$$\lambda_n = \frac{\mathbb{N}}{p} = \frac{\mathbb{N}}{\sqrt{2mT}}, \qquad \lambda_0 = \frac{\mathbb{N}}{\sqrt{2mT_0}}$$

Закон " 1/v "

Из формулы (43.8) следует, что вдали от резонанса сечение реакции обратно пропорционально квадратному корню из кинетической энергии налетающего нейтрона, т.е. обратно пропорционально скорости нейтрона:

$$\sigma \approx \frac{const}{v} \tag{43.9}$$

Этот результат очень важен: он объясняет, поче-му реакции под действием нейтронов в ядерных реакторах наиболее интенсивно идут на медленных нейтронах.