Теоретические основы органической химии

Реакции элиминирования

Лекция 33 (электронно-лекционный курс)

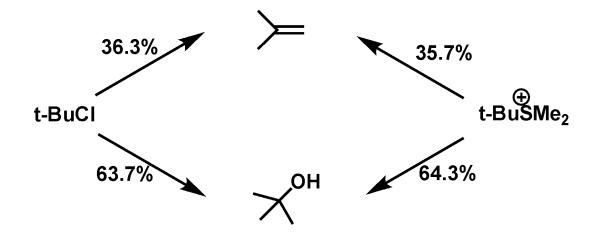
Проф. Бородкин Г.И.

Реакции элиминирования

$$A = B - \beta$$
 — элиминирование $A = B - \beta$ — α — элиминирование $A = B - \beta$ — α — элиминирование $A = B - \beta$ — α — элиминирование $A = \beta$ — β — β

Механизм Е1

$$R_1$$
 R_2 медленно R_1 R_2 R_2 + X^-


$$R_1 \xrightarrow{H} R_2$$
 растворитель $R_1 \xrightarrow{H} R_2$ R_1 R_2

Доказательства механизма Е

1. Кинетика: первый порядок по субстрату

$$w = k_1 [RX]$$

2. Отсутствие влияния природы уходящей группы

3. Склонность возникающего карбокатиона к перегруппировкам

Механизм Е1сВ

$$C \leftarrow C \leftarrow X$$
 основание $C \leftarrow C \leftarrow X$ (1)

Различают три крайних случая:

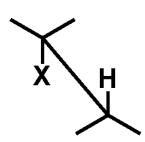
- 1. (E1cB)R, карбанион превращается в исходное соединение быстрее, чем в продукт; стадия 1 обратима.
- 2. (E1cB), стадия 1 самая медленная; образование продукта происходит быстрее, чем возврат карбаниона в исходное состояние. В этом случае стадия 1 по существу необратима.
- 3. (E1) анион, стадия 1 быстрая, карбанион медленно превращается в продукт. Это характерно для устойчивых карбанионов.

Доказательства Е1сВ

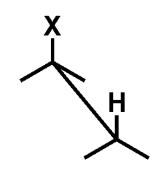
- 1. Природа субстрата: слабый нуклеофуг Z и наличие кислого атома водорода
- 2. Природа Z сильно влияет на скорость реакции

ZCH₂CH₂OPh

 $Z = NO_{2}$, SMe_{2} , $ArSO_{2}$, CN, COOR

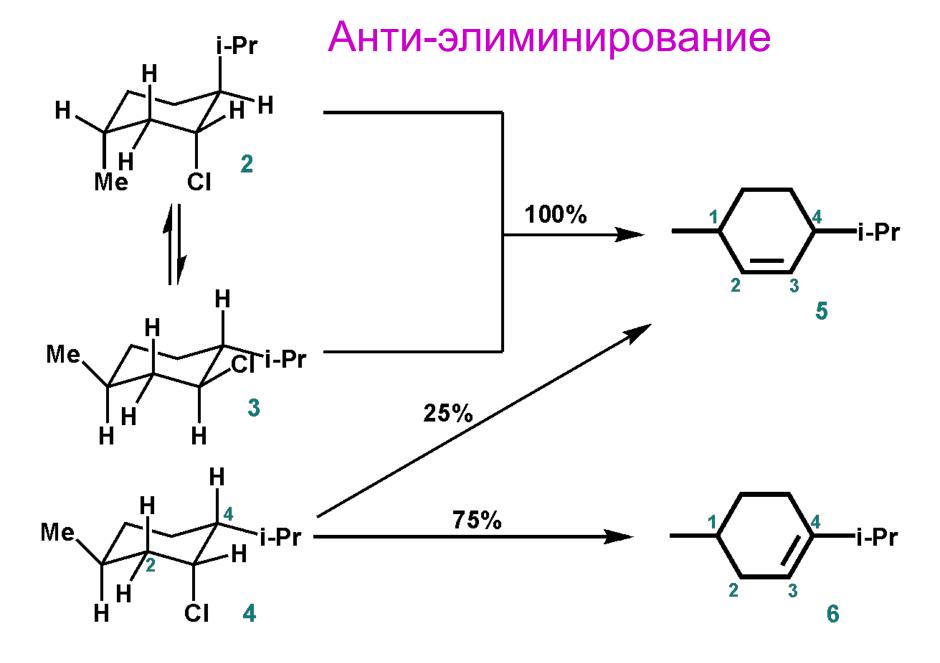

Механизм Е2

$$C = C + X^{-} + B-H$$
B:

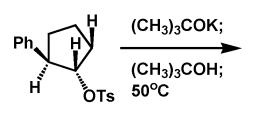

1. Кинетика втрого порядка

$$w = k [субстрат] [B-]$$

- 2. Кинетический изотопный эффект k_H/k_D (3 8)
- 3. Стереоспецифичность реакции



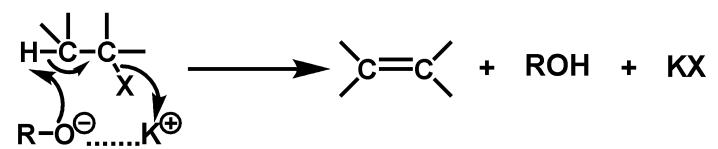
А) анти-перипланарная конформация, при таком расположении групп происходит анти-элиминирование, Н и Х уходят в противоположных направлениях



Б) син-перипланарная конформация, при таком расположении групп происходит син-элиминирование, Н и Х уходят в одном и том же направлении

Для образования π-связи атомы B,H,C=C,X должны лежать в одной плоскости:

Син-элиминирование

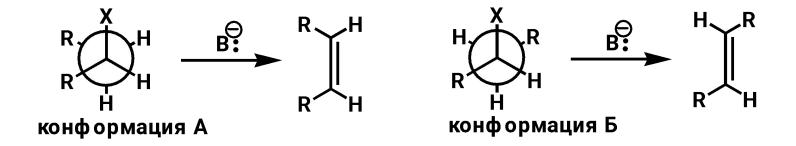


ñèí -ýëèì èí èðî âàí èå

àí ò è-ýëèì èí èðî âàí èå

Соотношение син- и анти-элиминирования

1. Образование агломератов ионных пар способствует син-элиминированию



2. Син-элиминирование преимущественно реализуется в случае электроотрицательных уходящих групп (F, R₃N⁺ и др.) и при использовании в качестве основания сильных оснований (t-BuOK и др.)

Син-, анти-дихотомия

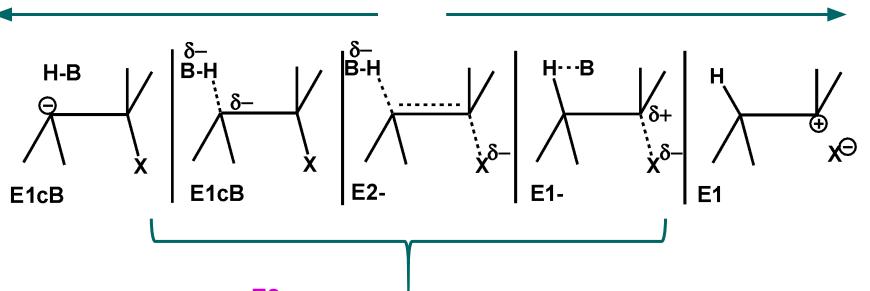
$$C_4H_9$$
 — C_4H_9 — C_4H_9

Влияние стерических эффектов заместителей R в исходной конформации

Природа уходящей группы и основания

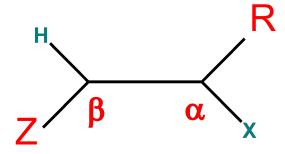
CH₃OK, CH₃OH, 60°C

(CH₃)₃COK, (CH₃)₃COH


	(1)	(2)	(3)
X=I	19%	63%	18%
X=Br	27%	56%	17%
X=CI	33%	50%	17%
X=F	69%	21%	10%

	(1)	(2)	(3)
X=I	78%	15%	7%
X=Br	91%	5%	4%
X=CI	96%	1%	3%
X=F	83%	3%	14%

Спектр механизмов Е1-Е2-Е1сВ


Увеличение карбанионного характера

Увеличение карбокатионного характера

Е2 – переходные состояния

Влияние структуры субстрата на Е1-Е2-Е1сВ

1. R = Alk, Ar

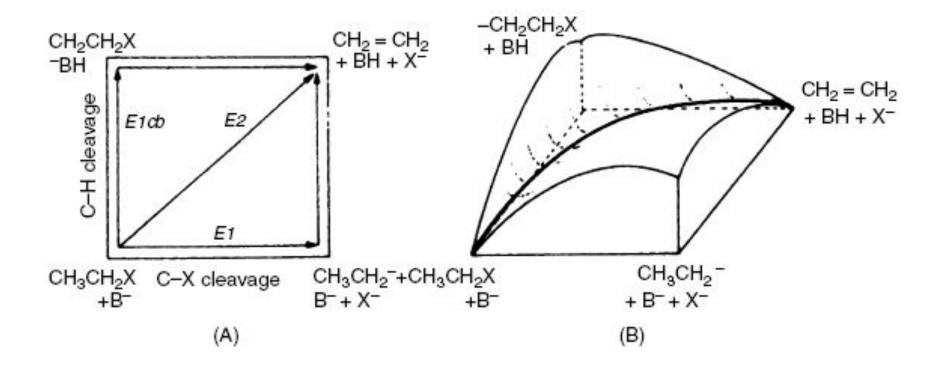
Стабилизация карбокатиона и переходного состояния

2. Z = Ar, акцепторы ==> E1cB Стабилизация карбаниона; увеличение силы основания

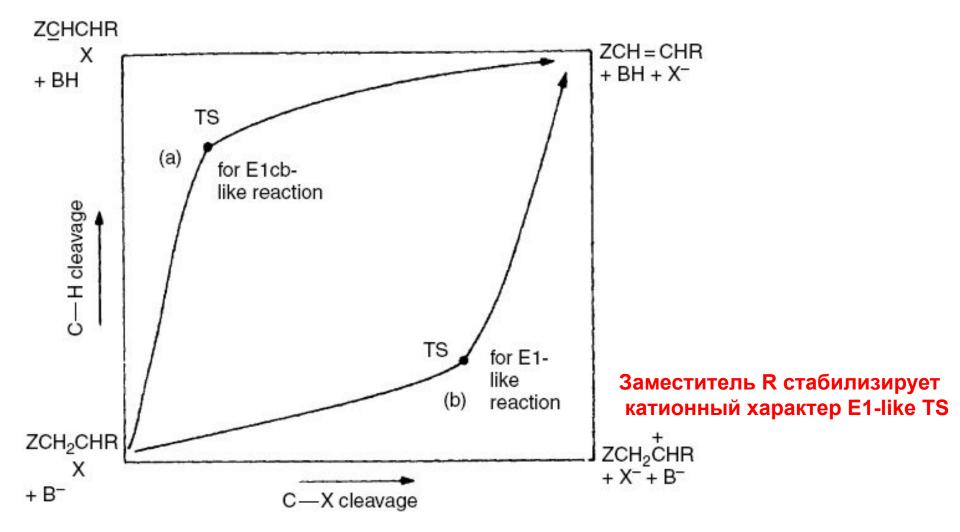
Влияние растворителя и температуры на E1-E2-E1cB и тип реакции

- 1. Более полярное окружение повышает скорость реакции, которая идет по механизму, включающему ионные интермедиаты. При наличии нейтральных уходящих групп ожидается, что реакциям Е1 и Е1сВ будет способствовать повышение полярности растворителя и его ионной силы.
- 2. Влияние растворителя на соотношение элиминирование/ замещение

Увеличение полярности растворителя благоприятствует механизму S_N^2 и уменьшается «доля E2». В большинстве полярных растворителей S_N^2 преобладают над E1.


3. Влияние температуры

При повышении температуры элиминирование преобладает над замещением. Это связано с тем, что энергия активации реакций элиминирования обычно выше, чем реакций замещения.


Диаграммы Дженкса-О'Феррола

$$CH_{3}CH_{2}X \xrightarrow{\longrightarrow} CH_{3}CH_{2}^{\oplus} + \stackrel{S:}{X} \xrightarrow{\longrightarrow} CH_{2}=CH_{2} + SH^{\oplus}$$

$$CH_{3}CH_{2}X \xrightarrow{B:} CH_{2}CH_{2}X + BH \xrightarrow{\longrightarrow} CH_{2}=CH_{2} + \stackrel{S:}{X} \xrightarrow{\longleftarrow} E1cB$$

Заместитель Z стабилизирует карбаниооный характер E1cB-like TS

Методы установления механизма (примеры)

E2: исходя из CH и CI кинетических изотопных эффектов $k_H/k_D = 7.1 (CH_3O^-)$; 8.4 $((C_2H_5)_3N)$ $k^{35}CI/k^{37}CI = 1.0086 (CH_3O^-)$; 1.0101 $((C_2H_5)_3N)$

$$H-N$$
 CH_2CH_2
 $Duffer$
 $H-N$
 $CH=CH_2$

E1cB: на основании наблюдений обмена между СН и растворителем и наличие изотопного эффекта растворителя