Микроклимат производственных помещений

Микроклимат

Микроклимат оценивают сочетанием четырёх факторов:

- 1. Температура воздуха $t_{\rm R}$, ${}^{\rm 0}$ С.
- 2. Скорость движения воздуха $V_{_{\rm B}}$, м/с.
- 3. Относительная влажность ф, %.
- 4. Радиационная температура излучающих стен t_{рад.}, ⁰С.

Организм человека постоянно находится в состоянии теплообмена с окружающей средой.

Вследствие белкового, углеводного и жирового обмена в организме вырабатывается тепло (теплопродукция) $Q_{_{\rm T.}}$, количество которого зависит от рода деятельности и интенсивности выполняемой работы. Это тепло для спокойного состояния человека составляет 80 - 100 вт.

Отдача тепла от тела человека

Теплопродукция организма отдаётся в окружающую среду посредством конвекции, излучением тепла и испарением влаги с поверхности кожи.

Тепло, передающееся конвекцией Q_{κ} (вт) определяется:

$$Q_{\kappa} = \alpha F (t_m - t_e),$$

где α - коэффициент теплоотдачи, который зависит от скорости движения воздуха, вт/(м²*град.); F - площадь поверхности тела, м²; $t_{_T}$, $t_{_B}$ - температура тела и воздуха. Конвективная отдача тепла зависит от скорости движения и температуры воздуха.

Отдача тепла излучением $Q_{\rm изл.}$ (вт) происходит, если температура тела больше температуры стен.

Отдача тепла от тела человека

Теплоотдача за счёт испарения влаги $Q_{\rm исп.}$ (вт) с поверхности кожи зависит от влажности воздуха, а для открытых участков тела ещё и от скорости его движения.

Абсолютная влажность воздуха (A, г/кг) - это количество водяного пара, содержащегося в 1кг воздуха при данной температуре и давлении.

Максимальная влажность (F, г/кг) - это количество водяного пара, которое может содержаться в 1кг воздухе при тех же условиях.

Относительная влажность Ф определяется:

$$\varphi = \frac{A}{F} 100, \%$$

Уравнение теплового комфорта

Нормальные для определённого вида деятельности теплоощущения человека характеризуются уравнением теплового комфорта:

$$\mathbf{Q}_{\mathbf{T}} = \mathbf{Q}_{\mathbf{K}} + \mathbf{Q}_{\mathbf{W3.11.}} + \mathbf{Q}_{\mathbf{WCII.}}$$

В организме человека имеется психофизиологическая система терморегуляции, позволяющая ему адаптироваться к изменениям климатических факторов и поддерживать нормальную постоянную температуру тела. Терморегуляция осуществляется двумя процессами: выработкой тепла и теплоотдачей, течение которых регулируется ЦНС. При нарушении этого уравнения возможно ухудшение самочувствия, переохлаждение или перегрев организма.

Гипотермия

Гипотермия (переохлаждение) начинается, когда общий или локальный дефицит тепла в организме больше 8,7 кДж/кг, а система терморегуляции не справляется с этими изменениями.

$$(Q_{\kappa} + Q_{u3n.} + Q_{ucn.}) > Q_{m}$$

Нарушается кровоснабжение, что вызывает такие простудные заболевания, как невриты, радикулиты, заболевания верхних дыхательных путей.

В результате гипотермии наблюдается отклонение от нормального поведения, а затем апатия, усталость, ложное ощущение благополучия, замедленные движения, угнетение психики, а в тяжёлых случаях - потеря сознания и летальный исход.

Гипертермия

Гипертермия (перегрев) наблюдается при нарушении уравнения теплового комфорта, когда внешняя теплота $Q_{\rm B.T}$ суммируется с теплопродукцией организма, и накопление тепла в организме превышает 8,7 кДж/кг или доля потерь тепла испарением более 30%.

$$(Q_m + Q_{e,m}) > (Q_{\kappa} + Q_{usn.} + Q_{ucn.})$$

При гипертермии возникает головная боль, учащённый пульс, снижение артериального давления, поверхностное дыхание, тошнота. При тяжёлом поражении возможна потеря сознания. Эти симптомы характерны для теплового и для солнечного удара. Повышенная влажность воздуха более 75% ускоряет развитие гипертермии и гипотермии.

Нормирование микроклимата

Климатические факторы действуют на человека комплексно. В то же время установлены комфортные значения для каждого фактора:

Температура воздуха 20 - 23 ⁰C.

Относительная влажность 40 - 60 %.

Скорость движения воздуха для лёгкой работы 0,2 - 0,4 м/с.

Категории работ по интенсивности энергозатрат:

к категории Іа относятся работы с интенсивностью энергозатрат до 120 ккал/ч, производимые сидя и сопровождающиеся незначительным физическим напряжением;

к категории Іб относятся работы с интенсивностью энергозатрат 121 — 150 ккал/ч, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением;

к категории *Па* относятся работы с интенсивностью энергозатрат 151 — 200 ккал/ч, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий в положении стоя или сидя и требующие определенного физического напряжения;

к категории Пб относятся работы с интенсивностью энергозатрат 201 — 250 ккал/ч, связанные с ходьбой, перемещением и переноской тяжести до 10 кг и сопровождающиеся умеренным физическим напряжением;

к категории III относятся работы с интенсивностью энергозатрат более 250 ккал/ч, связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

Периоды года:

температурой наружного воздуха выше +10°C;

холодный период года характеризуется среднесуточной температурой наружного воздуха, равной + 10°С и ниже.

Оценка микроклимата в холодный период года при работе на открытых территориях и неотапливаемых помещениях производится с учетом среднесменных значений температуры воздуха за 3 зимних месяца с учетом вероятной скорости ветра.

Для открытых территорий в теплый период года оценка микроклимата производится в полдень при отсутствии облачности.

ТНС-индекс — эмпирический интегральный показатель, отражающий сочетанное влияние температуры воздуха, скорости его движения, влажности и теплового излучения на теплообмен человека с окружающей средой.

Если температура воздуха или тепловое облучение не превышает верхних границ допустимых уровней, оценка микроклимата может проводиться как по отдельным его составляющим, так и по ТНС-индексу. Если температура или тепловое облучение превышает верхнюю границу допустимых значений, оценку микроклимата проводят по показателю ТНС-индекса.

ОПТИМАЛЬНЫЕ ВЕЛИЧИНЫ

ПОКАЗАТЕЛЕЙ МИКРОКЛИМАТА НА РАБОЧИХ МЕСТАХ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

МЕСТАХ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИИ							
Период года	Категория работ по уровням энергозатрат, Вт	Температура воздуха, ° С	Температура поверхнос тей, °С	Относитель ная влажность воздуха, %	Скорость движения воздуха, м/с		
Холодный	Ia (до 139)	22 - 24	21 - 25	60 - 40	0,1		
	I6 (140 - 174)	21 - 23	20 - 24	60 - 40	0,1		
	IIa (175 - 232)	19 - 21	18 - 22	60 - 40	0,2		
	II6 (233 - 290)	17 - 19	16 - 20	60 - 40	0,2		
	III (более 290)	16 - 18	15 - 19	60 - 40	0,3		
Теплый	Ia (до 139)	23 - 25	22 - 26	60 - 40	0,1		
	I6 (140 - 174)	22 - 24	21 - 25	60 - 40	0,1		
	IIa (175 - 232)	20 - 22	19 - 23	60 - 40	0,2		
	II6 (233 - 290)	19 - 21	18 - 22	60 - 40	0,2		
	III (более 290)	18 - 20	17 - 21	60 - 40	0,3		

ДОПУСТИМЫЕ ВЕЛИЧИНЫ

ПОКАЗАТЕЛЕЙ МИКРОКЛИМАТА НА РАБОЧИХ МЕСТАХ

ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ (холодный период года)

Категория работ по Уровню энерготрат , Вт	Температура воздуха, °С				Скорость движения воздуха, м/с		
	диапазон ниже опти- мальных величин	диапазон выше опти- мальных величин	Темпе- ратура Поверхнос тей, °С	Относи тельная Влажность воздуха, %	для диапазона Температур воздуха ниже оптимальных величин, не более	для диапазона Температур воздуха выше оптимальных величин, не более	
	Ia (до 139)	20,0 - 21,9	24,1 - 25,0	19,0 - 26,0	15 - 75	0,1	0,1
	I6 (140 - 174)	19,0 - 20,9	23,1 - 24,0	18,0 - 25,0	15 - 75	0,1	0,2
	Ha (175 - 232)	17,0 - 18,9	21,1 - 23,0	16,0 - 24,0	15 - 75	0,1	0,3
	H6 (233 - 290)	15,0 - 16,9	19,1 - 22,0	14,0 - 23,0	15 - 75	0,2	0,4
	III (бол ее	13,0 - 15,9	18,1 - 21,0	12,0 - 22,0	15 - 75	0,2	0,4

ДОПУСТИМЫЕ ВЕЛИЧИНЫ

ПОКАЗАТЕЛЕЙ МИКРОКЛИМАТА НА РАБОЧИХ МЕСТАХ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ (теплый период года)

Категория работ Іа (до 139)	Температ ура воздуха, ниже оптим.°С 21,0 - 22,9	Температ ура воздуха, выше оптим.°С 25,1 - 28,0	20,0 - 29,0	Относи- тельная влажност ь воздуха, % 15 - 75	Скорость движения воздуха, м/с 0,1	Скорость движения воздуха, м/с 0,2
Iб (140 - 174)	20,0 - 21,9	24,1 - 28,0	19,0 - 29,0	15 - 75	0,1	0,3
Ha (175 - 232)	18,0 - 19,9	22,1 - 27,0	17,0 - 28,0	15 - 75	0,1	0,4
Пб (233 - 290)	16,0 - 18,9	21,1 - 27,0	15,0 - 28,0	15 - 75	0,2	0,5
III (более 290)	15,0 - 17,9	20,1 - 26,0	14,0 - 27,0	15 - 75	0,2	0,5

ДОПУСТИМЫЕ ВЕЛИЧИНЫ ИНТЕНСИВНОСТИ ТЕПЛОВОГО ОБЛУЧЕНИЯ ПОВЕРХНОСТИ ТЕЛА РАБОТАЮЩИХ ОТ ПРОИЗВОДСТВЕННЫХ

ИСТОЧНИКОВ

Облучаемая	
поверхность тела, %	0

Интенсивность теплового облучения, Вт/кв. м, не более

50 и более

35

25 - 50

70

не более 25

100

Улучшение микроклимата

Улучшение микроклимата достигается:

В холодный период года применением теплоизолирующих материалов и систем отопления.

В тёплый период года использованием вентиляции и систем кондиционирования воздуха (СКВ).

Системы отопления делят на:

паровые;

водяные;

воздушные;

электрические;

топливные.

Цель отопления -

компенсиро-

<mark>вать потери теплоты.</mark>

<u>Вентиляция по способу пере</u>мещения воздуха делится на:

естественную;

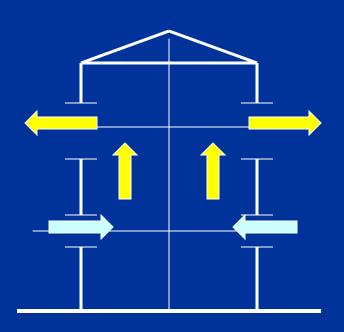
искусственную;

смешанную.

Назначение вентиляции - это поглощение избыточной теплоты или нагревание воздуха.

Системы отопления

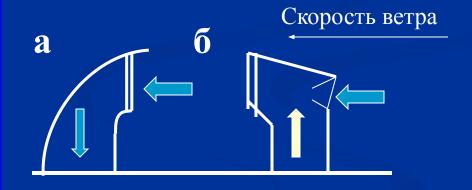
Потери теплоты в помещении Q_n складываются из потерь на ограждениях $Q_{\text{огр.}}$ и на остеклении $Q_{\text{ост.}}$. Система отопления должна иметь теплопроизводительность не меньше, чем величина теплопотерь.


$$Q_{n} = Q_{ocp.} + Q_{ocm.};$$

$$Q_{ocp.} = F_{ocp.} K_{ocp.} (t_{eh.} - t_{hap.});$$

$$Q_{ocm.} = F_{ocm} K_{ocm.} (t_{eh.} - t_{hap.}),$$

где $F_{\text{огр.}}$, $F_{\text{ост.}}$ - площадь ограждений и остекления, м²; $K_{\text{огр.}}$, $K_{\text{ост.}}$ - коэффициенты теплопередачи, вт/(м²*К); $t_{\text{вн.}}$, $t_{\text{нар.}}$ - температура внутреннего и наружного воздуха, 0 С.


Естественная вентиляция

Естественная вентиляция осуществляется гравитационным давлением за счёт разности плотностей холодного и тёплого воздуха, а также ветровым напором.

Организованная естественная вентиляция - аэрация.

Естественная вентиляция дефлекторами

а - работает на приток;

б - эжекционный, работает на вытяжку

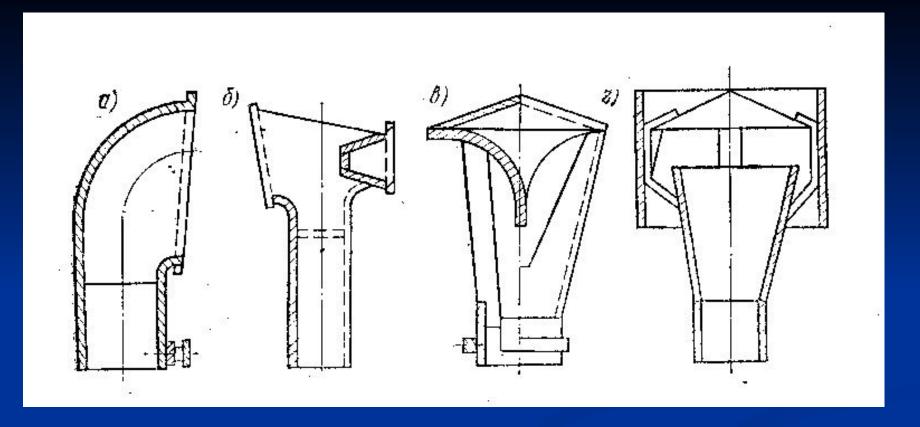


Рис. 14 Дефлекторы

а - с плавным раструбом; б - эжекционный;

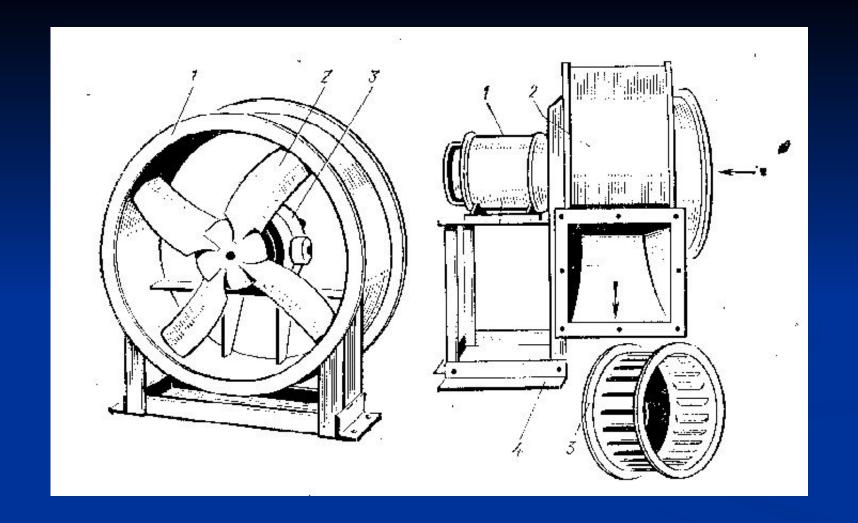
в - трёхгранный; г - круглый.

Искусственная вентиляция

При искусственной вентиляции воздух подаётся осевыми или центробежными (радиальными) вентиляторами. Вентилятор характеризуется:

Производительность вентилятора определяется: Производительностью (подачей) L, м³/ч.

Развиваемым давлением р, Па.


Электрической мощностью N, квт.

 $L = 3600 \; F \; V$,

Коэффициентом полезного действия η.

где F - площадь сечения вентиляционного патрубка, M^2 ; V - скорость движения воздуха, M/c .

Осевые вентиляторы применяют, когда требуется получить значительную производительность, а центробежные - для обеспечения высокого давления.

Рис. 15 Осевой вентилятор

- 1 корпус; 2 крылатка;
- 3 электродвигатель.

Рис. 16 Центробежный вентилятор

- 1 электродвигатель; 2 кожух;
- 3 крылатка; 4 станина.

Поглощение избыточной теплоты Qизб.

Количество воздуха L, которое надо подать в помещение для поглощения избыточной теплоты определяется:

$$L = \frac{Q_{u36.}}{C \rho (t_{eh.} - t_{hap.})},$$

где С- удельная теплоёмкость воздуха, вт/кг*град.;

 ρ - плотность воздуха, кг/м³.

Избыточная теплота определяется теплом, излучаемым от людей $Q_{\text{люд.}}$, оборудования $Q_{\text{обор.}}$, освещения $Q_{\text{осв.}}$, солнечной радиации $Q_{\text{рад.}}$, и теплом, выходящим через ограждения $Q_{\text{огр.}}$

$$Q_{uso.} = Q_{noo.} + Q_{ooop.} + Q_{oce.} + Q_{pao.} - Q_{oep.}$$

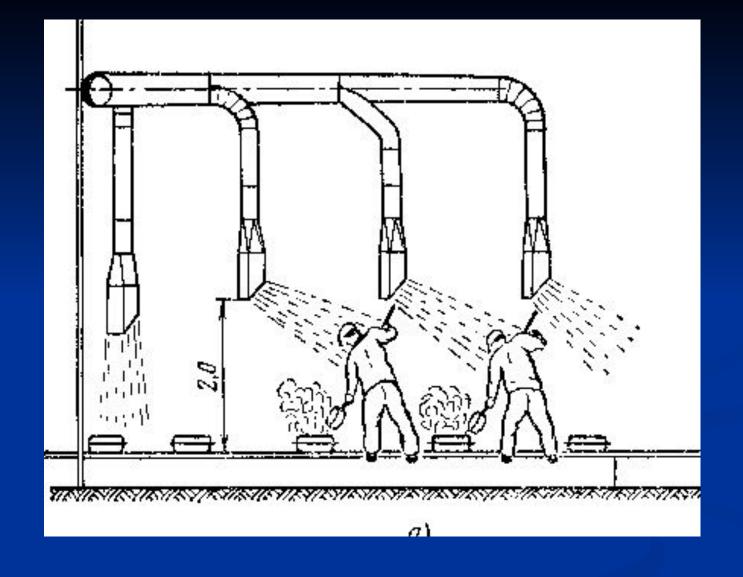
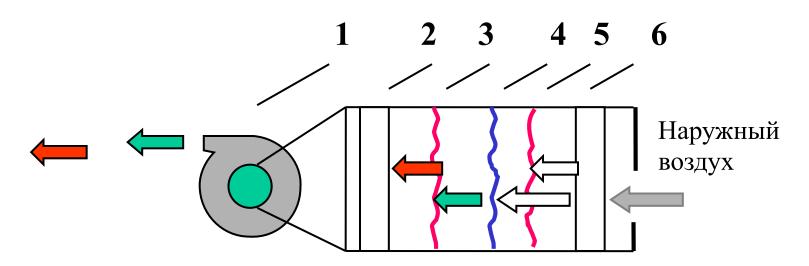



Рис. 16 Местная приточная вентиляция - воздушное душирование.

Система кондиционирования воздуха (СКВ)

СКВ обеспечивает для человека оптимальный микроклимат

Рис. 2 Схема кондиционера

1 — вентилятор; 2 — увлажнитель; 3 — калорифер второй ступени; 4 — охладитель; 5 — калорифер первой ступени; 6 — воздушный фильтр.

В режиме охлаждения воздух охлаждается и осушается (4,3)

В режиме отопления воздух нагревается и увлажняется (5,2)

Аэроионный состав воздуха

Аэроионы — легкие ионы, носителями заряда которых являются атомы, молекулы или комплексы молекул газов.

Ионизация – процесс образования аэроионов.

Деионизация — процесс лищения носителя своего заряда.

Нормируемыми показателями аэроионного состава воздуха являются:

- концентрация аэроионов (минимально и максимально допустимая) обеих полярностей p⁺, p⁻, определяемые как количество аэроионов в 1 см³ воздуха (ион/см³);
- коэффициент униполярности У, определяемый как отношение p⁺/ p⁻.

Измерения уровня ионизации воздуха производится:

- в помещениях, в отделке и (или) меблировке которых используются синтетические материалы и покрытия, способные накапливать электростатический заряд;
- помещения, в которых эксплуатируется оборудование, способное создавать электростатические поля, включая видеодисплейные терминалы и прочая оргтехника;
- гермозамкнутые помещения с искусственной средой обитания;
- помещения, оснащенные системами принудительной вентиляции, очистки и (или) кондиционирования воздуха;
- помещения, в которых эксплуатируются аэроионизаторы и деионизаторы;
- помещения, в которых осуществляют процессы плавки или сварки металла.

Контроль аэроионного состава воздуха осуществляется:

- в порядке планового контроля не реже одного раза в год;
- при аттестации рабочих мест;
- при вводе в эксплуатацию рабочих мест.
- при вводе в эксплуатацию оборудования или материалов, способных создавать или накапливать электростатический заряд;
- при оснащении рабочих мест аэроионизаторами или деионизаторами,
- Контроль и оценку осуществляют в соответствии с СанПиН 2.2.4.1294-03 и методическими указаниями МУК 4.3.1675-03.

Максимальная оценка – класс 3.1.